skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock

Abstract

In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock ($$M{\sim}11$$) propagating through a low-density ($${\rho}{\sim}0.01\text{ }\text{ }\mathrm{mg}/\mathrm{cc}$$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2];  [3];  [3];  [3];  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
LLNL Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1438627
Alternate Identifier(s):
OSTI ID: 1423500; OSTI ID: 1466160
Report Number(s):
LLNL-JRNL-741313; LLNL-JRNL-755398
Journal ID: ISSN 0031-9007; TRN: US1900472
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 9; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; high-energy-density plasmas; kinetic theory; plasma instabilities; shock waves & discontinuities in plasma; Lasers

Citation Formats

Rinderknecht, Hans G., Park, H. -S., Ross, J. S., Amendt, P. A., Higginson, D. P., Wilks, S. C., Haberberger, D., Katz, J., Froula, D. H., Hoffman, N. M., Kagan, G., Keenan, B. D., and Vold, E. L. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.095001.
Rinderknecht, Hans G., Park, H. -S., Ross, J. S., Amendt, P. A., Higginson, D. P., Wilks, S. C., Haberberger, D., Katz, J., Froula, D. H., Hoffman, N. M., Kagan, G., Keenan, B. D., & Vold, E. L. Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock. United States. doi:10.1103/PhysRevLett.120.095001.
Rinderknecht, Hans G., Park, H. -S., Ross, J. S., Amendt, P. A., Higginson, D. P., Wilks, S. C., Haberberger, D., Katz, J., Froula, D. H., Hoffman, N. M., Kagan, G., Keenan, B. D., and Vold, E. L. Fri . "Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock". United States. doi:10.1103/PhysRevLett.120.095001. https://www.osti.gov/servlets/purl/1438627.
@article{osti_1438627,
title = {Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock},
author = {Rinderknecht, Hans G. and Park, H. -S. and Ross, J. S. and Amendt, P. A. and Higginson, D. P. and Wilks, S. C. and Haberberger, D. and Katz, J. and Froula, D. H. and Hoffman, N. M. and Kagan, G. and Keenan, B. D. and Vold, E. L.},
abstractNote = {In this paper, the structure of a strong collisional shock front forming in a plasma is directly probed for the first time in laser-driven gas-jet experiments. Thomson scattering of a 526.5 nm probe beam was used to diagnose temperature and ion velocity distribution in a strong shock ($M{\sim}11$) propagating through a low-density (${\rho}{\sim}0.01\text{ }\text{ }\mathrm{mg}/\mathrm{cc}$) plasma composed of hydrogen. A forward-streaming population of ions traveling in excess of the shock velocity was observed to heat and slow down on an unmoving, unshocked population of cold protons, until ultimately the populations merge and begin to thermalize. Finally, instabilities are observed during the merging, indicating a uniquely plasma-phase process in shock front formation.},
doi = {10.1103/PhysRevLett.120.095001},
journal = {Physical Review Letters},
number = 9,
volume = 120,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Experimental design to probe plasma shock front structure. Laser beams drive a Si3N4 foil, launching a strong shock into a H2 gas jet. Thomsonscattered light from a 2ω beam aligned with the foil axis is imaged in a 1.75 mm region, 4.0 mm from the foil. (b)more » View of the target foil aligned near the gas-jet nozzle. (c) Pinhole camera image showing x-rays (hν > 1.5 keV) from the foil.« less

Save / Share:

Works referenced in this record:

Deciphering the kinetic structure of multi-ion plasma shocks
journal, November 2017


Study of self-generated fields in strongly-shocked, low-density systems using broadband proton radiography
journal, July 2017

  • Hua, R.; Sio, H.; Wilks, S. C.
  • Applied Physics Letters, Vol. 111, Issue 3
  • DOI: 10.1063/1.4995226

Implementation of imaging Thomson scattering on the Omega Laser
journal, October 2006

  • Ross, J. S.; Froula, D. H.; Mackinnon, A. J.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2220077

Time-Resolved Characterization of the Formation of a Collisionless Shock
journal, May 2013


Characterization of electrostatic shock in laser-produced optically-thin plasma flows using optical diagnostics
journal, July 2017

  • Morita, T.; Sakawa, Y.; Kuramitsu, Y.
  • Physics of Plasmas, Vol. 24, Issue 7
  • DOI: 10.1063/1.4990058

Thomson scattering diagnostic for the measurement of ion species fraction
journal, October 2012

  • Ross, J. S.; Park, H. -S.; Amendt, P.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731007

Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility
journal, July 2016

  • Ross, J. S.; Datte, P.; Divol, L.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959568

The formation of reverse shocks in magnetized high energy density supersonic plasma flows
journal, May 2014

  • Lebedev, S. V.; Suttle, L.; Swadling, G. F.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874334

Stopping and thermalization of interpenetrating plasma streams
journal, January 1991

  • Berger, R. L.; Albritton, J. R.; Randall, C. J.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 1
  • DOI: 10.1063/1.859954

Initial performance results of the OMEGA laser system
journal, January 1997


Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers
journal, March 2012


Experimental Characterization of the Stagnation Layer between Two Obliquely Merging Supersonic Plasma Jets
journal, August 2013


Time Evolution of Collisionless Shock in Counterstreaming Laser-Produced Plasmas
journal, April 2011


Implementation of a high energy 4ω probe beam on the Omega laser
journal, October 2004

  • Mackinnon, A. J.; Shiromizu, S.; Antonini, G.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1789247

A reflective image-rotating periscope for spatially resolved Thomson-scattering experiments on OMEGA
journal, December 2013


Species separation and kinetic effects in collisional plasma shocks
journal, May 2014

  • Bellei, C.; Rinderknecht, H.; Zylstra, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876614

Structure of a Plasma Shock Wave
journal, January 1964

  • Jaffrin, Michel Y.; Probstein, Ronald F.
  • Physics of Fluids, Vol. 7, Issue 10
  • DOI: 10.1063/1.1711072

Collisionless shock in a laser-produced ablating plasma
journal, August 1988


Shock-induced mix across an ideal interface
journal, April 2017

  • Bellei, C.; Amendt, P. A.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4979904

Observation of Collisionless Shocks in Laser-Plasma Experiments
journal, July 2008


Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility
journal, May 2017


Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma
journal, September 1993

  • Vidal, F.; Matte, J. P.; Casanova, M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.860654

Collision and interpenetration of plasmas created by laser‐illuminated disks
journal, April 1992

  • Bosch, R. A.; Berger, R. L.; Failor, B. H.
  • Physics of Fluids B: Plasma Physics, Vol. 4, Issue 4
  • DOI: 10.1063/1.860114

Simulation techniques for heavy ion fusion chamber transport
journal, May 2001

  • Welch, D. R.; Rose, D. V.; Oliver, B. V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 464, Issue 1-3
  • DOI: 10.1016/S0168-9002(01)00024-9

Ignition on the National Ignition Facility: a path towards inertial fusion energy
journal, September 2009


Measurement of Shock-Wave Structure in Helium-Argon Mixtures
journal, January 1967


Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)
journal, July 2016

  • Follett, R. K.; Delettrez, J. A.; Edgell, D. H.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959160

HYADES—A plasma hydrodynamics code for dense plasma studies
journal, January 1994

  • Larsen, Jon T.; Lane, Stephen M.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 51, Issue 1-2
  • DOI: 10.1016/0022-4073(94)90078-7

Thickness of an embedded ion shock
journal, January 1975

  • Greywall, Mahesh S.
  • Physics of Fluids, Vol. 18, Issue 11
  • DOI: 10.1063/1.861042

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.