skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 15, 2019

Title: Superconductivity in few-layer stanene

A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ; ORCiD logo [2] ;  [3] ;  [2] ;  [2] ;  [2] ;  [4] ;  [2]
  1. Tsinghua Univ., Beijing (China). State Key Lab. of Low-Dimensional Quantum Physics and Dept. of Physics
  2. Tsinghua Univ., Beijing (China). State Key Lab. of Low-Dimensional Quantum Physics and Dept. of Physics; Collaborative Innovation Center of Quantum Matter (CICQM), Beijing (China)
  3. Tsinghua Univ., Beijing (China). State Key Lab. of Low-Dimensional Quantum Physics and Dept. of Physics; Collaborative Innovation Center of Quantum Matter (CICQM), Beijing (China); RIKEN Center for Emergent Matter Science (CEMS), Saitama (Japan)
  4. Stanford Univ., CA (United States). Dept. of Physics
Publication Date:
Grant/Contract Number:
AC02-76SF00515; 2017YFA0304600; 2017YFA0302902; 11604176
Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 14; Journal Issue: 4; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Ministry of Science and Technology (MOST) (China); National Natural Science Foundation of China (NNSFC); Beijing Innovation Center for Future Chip (ICFC); Tsinghua Univ., Beijing (China); Thousand-Young-Talents Program (China)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; Superconducting properties and materials; Topological matter
OSTI Identifier:
1438571