skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced ion acceleration in transition from opaque to transparent plasmas

Abstract

Using particle-in-cell simulations, we investigate ion acceleration in the interaction of high intensity lasers with plasmas which transition from opaque to transparent during the interaction process. We show that the highest ion energies are achieved when the laser traverses the target around the peak intensity and re-heats the electron population responsible for the plasma expansion, enhancing the corresponding sheath electric field. This process can lead to an increase of up to 2x in ion energy when compared with the standard Target Normal Sheath Acceleration in opaque targets under the same laser conditions. A theoretical model is developed to predict the optimal target areal density as a function of laser intensity and pulse duration. A systematic parametric scan for a wide range of target densities and thicknesses is performed in 1D, 2D and 3D and shown consistent with the theory and with recent experimental results. Thus, these results open the way for a better optimization of the ion energy in future laser–solid experiments.

Authors:
 [1];  [1];  [1]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1438561
Grant/Contract Number:  
AC02-76SF00515; FWP 100182; FWP 100237
Resource Type:
Accepted Manuscript
Journal Name:
New Journal of Physics
Additional Journal Information:
Journal Volume: 20; Journal Issue: 4; Journal ID: ISSN 1367-2630
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Mishra, R., Fiuza, F., and Glenzer, S. Enhanced ion acceleration in transition from opaque to transparent plasmas. United States: N. p., 2018. Web. https://doi.org/10.1088/1367-2630/aab8db.
Mishra, R., Fiuza, F., & Glenzer, S. Enhanced ion acceleration in transition from opaque to transparent plasmas. United States. https://doi.org/10.1088/1367-2630/aab8db
Mishra, R., Fiuza, F., and Glenzer, S. Fri . "Enhanced ion acceleration in transition from opaque to transparent plasmas". United States. https://doi.org/10.1088/1367-2630/aab8db. https://www.osti.gov/servlets/purl/1438561.
@article{osti_1438561,
title = {Enhanced ion acceleration in transition from opaque to transparent plasmas},
author = {Mishra, R. and Fiuza, F. and Glenzer, S.},
abstractNote = {Using particle-in-cell simulations, we investigate ion acceleration in the interaction of high intensity lasers with plasmas which transition from opaque to transparent during the interaction process. We show that the highest ion energies are achieved when the laser traverses the target around the peak intensity and re-heats the electron population responsible for the plasma expansion, enhancing the corresponding sheath electric field. This process can lead to an increase of up to 2x in ion energy when compared with the standard Target Normal Sheath Acceleration in opaque targets under the same laser conditions. A theoretical model is developed to predict the optimal target areal density as a function of laser intensity and pulse duration. A systematic parametric scan for a wide range of target densities and thicknesses is performed in 1D, 2D and 3D and shown consistent with the theory and with recent experimental results. Thus, these results open the way for a better optimization of the ion energy in future laser–solid experiments.},
doi = {10.1088/1367-2630/aab8db},
journal = {New Journal of Physics},
number = 4,
volume = 20,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Temporal evolution of the laser–plasma interaction for proton acceleration in the laser transparent regime. Rows 1 to 4 show the laser electricfield (Ey), longitudinal plasma electric field (Ex), electron, and ion phase space, respectively. The two top rows also show the ion (ni) and electron (ne) densities. Columnsmore » 1 to 3 correspond to interaction times of t=100 fs, 248 fs, and 330 fs. Black arrows correspond to the front of the accelerated ions. Black dotted vertical lines on the phase-space plots show the target initial boundaries (X=5–7.5 μm).« less

Save / Share:

Works referenced in this record:

Electric field detection in laser-plasma interaction experiments via the proton imaging technique
journal, May 2002

  • Borghesi, M.; Campbell, D. H.; Schiavi, A.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459457

Oncological hadrontherapy with laser ion accelerators
journal, July 2002


Fast Ignition by Intense Laser-Accelerated Proton Beams
journal, January 2001


Principles and applications of compact laser–plasma accelerators
journal, June 2008

  • Malka, Victor; Faure, Jérôme; Gauduel, Yann A.
  • Nature Physics, Vol. 4, Issue 6
  • DOI: 10.1038/nphys966

Scaling of proton acceleration driven by petawatt-laser–plasma interactions
journal, December 2006

  • Robson, L.; Simpson, P. T.; Clarke, R. J.
  • Nature Physics, Vol. 3, Issue 1
  • DOI: 10.1038/nphys476

Vision 20∕20: Proton therapy: Proton Therapy
journal, January 2009


Practicability of protontherapy using compact laser systems
journal, May 2004

  • Malka, Victor; Fritzler, Sven; Lefebvre, Erik
  • Medical Physics, Vol. 31, Issue 6
  • DOI: 10.1118/1.1747751

Energetic proton generation in ultra-intense laser–solid interactions
journal, February 2001

  • Wilks, S. C.; Langdon, A. B.; Cowan, T. E.
  • Physics of Plasmas, Vol. 8, Issue 2, p. 542-549
  • DOI: 10.1063/1.1333697

Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime
journal, April 2004


Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets
journal, May 2011

  • Gaillard, S. A.; Kluge, T.; Flippo, K. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3575624

Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams
journal, November 2011

  • Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2130

Laser-Driven Shock Acceleration of Monoenergetic Ion Beams
journal, November 2012


Solitary versus shock wave acceleration in laser-plasma interactions
journal, April 2012

  • Macchi, Andrea; Nindrayog, Amritpal Singh; Pegoraro, Francesco
  • Physical Review E, Vol. 85, Issue 4
  • DOI: 10.1103/PhysRevE.85.046402

Ion acceleration from laser-driven electrostatic shocks
journal, May 2013

  • Fiuza, F.; Stockem, A.; Boella, E.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801526

Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets
journal, March 2007

  • Antici, P.; Fuchs, J.; d’Humières, E.
  • Physics of Plasmas, Vol. 14, Issue 3
  • DOI: 10.1063/1.2480610

Laser acceleration of high-energy protons in variable density plasmas
journal, February 2009


Investigation of laser ion acceleration in low-density targets using exploded foils
journal, November 2013


Collimated protons accelerated from an overdense gas jet irradiated by a 1 µm wavelength high-intensity short-pulse laser
journal, October 2017


High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration
journal, September 2010


Laser accelerated ions from near critical gaseous targets
conference, May 2015

  • Helle, M. H.; Gordon, D. F.; Kaganovich, D.
  • SPIE Optics + Optoelectronics, SPIE Proceedings
  • DOI: 10.1117/12.2178878

Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils
journal, August 2003


Proton acceleration mechanisms in high-intensity laser interaction with thin foils
journal, June 2005

  • d’Humières, Emmanuel; Lefebvre, Erik; Gremillet, Laurent
  • Physics of Plasmas, Vol. 12, Issue 6
  • DOI: 10.1063/1.1927097

Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets
journal, May 2007

  • Yin, L.; Albright, B. J.; Hegelich, B. M.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2436857

Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas
journal, August 2012

  • Palaniyappan, Sasi; Hegelich, B. Manuel; Wu, Hui-Chun
  • Nature Physics, Vol. 8, Issue 10
  • DOI: 10.1038/nphys2390

Ion acceleration using high-contrast ultra-intense lasers
journal, June 2006

  • Fuchs, J.; Antici, P.; d'Humières, E.
  • Journal de Physique IV (Proceedings), Vol. 133
  • DOI: 10.1051/jp4:2006133235

Enhanced proton beams from ultrathin targets driven by high contrast laser pulses
journal, July 2006

  • Neely, D.; Foster, P.; Robinson, A.
  • Applied Physics Letters, Vol. 89, Issue 2
  • DOI: 10.1063/1.2220011

Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime
journal, July 2009


Laser-driven ion acceleration from relativistically transparent nanotargets
journal, August 2013


Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms
journal, June 2015

  • Wagner, F.; Bedacht, S.; Bagnoud, V.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4922661

Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
journal, October 2015


Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas
journal, July 2013

  • Mishra, R.; Leblanc, P.; Sentoku, Y.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4812701

Plasma Expansion into a Vacuum
journal, May 2003


Analytical Model for Ion Acceleration by High-Intensity Laser Pulses
journal, July 2006


Laser-driven proton scaling laws and new paths towards energy increase
journal, December 2005

  • Fuchs, J.; Antici, P.; d’Humières, E.
  • Nature Physics, Vol. 2, Issue 1
  • DOI: 10.1038/nphys199

J×B heating by very intense laser light
journal, January 1985

  • Kruer, W. L.; Estabrook, Kent
  • Physics of Fluids, Vol. 28, Issue 1
  • DOI: 10.1063/1.865171

Mechanism of generating fast electrons by an intense laser at a steep overdense interface
journal, August 2011


Relativistic Nonlinear Propagation of Laser Beams in Cold Overdense Plasmas
journal, January 1970


Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets
journal, February 2015

  • Brantov, A. V.; Govras, E. A.; Bychenkov, V. Yu.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 2
  • DOI: 10.1103/PhysRevSTAB.18.021301

Laser Ion-Acceleration Scaling Laws Seen in Multiparametric Particle-in-Cell Simulations
journal, March 2006


Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil
journal, July 1998

  • Vshivkov, V. A.; Naumova, N. M.; Pegoraro, F.
  • Physics of Plasmas, Vol. 5, Issue 7
  • DOI: 10.1063/1.872961

    Works referencing / citing this record:

    Development and characterization of liquid argon and methane microjets for high-rep-rate laser-plasma experiments
    journal, October 2018

    • Kim, Jongjin B.; Schoenwaelder, Christopher; Glenzer, Siegfried H.
    • Review of Scientific Instruments, Vol. 89, Issue 10
    • DOI: 10.1063/1.5038561

    Improved large-energy-range magnetic electron-positron spectrometer for experiments with the Texas Petawatt Laser
    journal, March 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.