skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on February 19, 2019

Title: Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage

Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Authors:
 [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [2] ; ORCiD logo [1] ; ORCiD logo [2]
  1. Stony Brook Univ., Stony Brook, NY (United States)
  2. Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Report Number(s):
BNL-205690-2018-JAAM
Journal ID: ISSN 0001-4842
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Accounts of Chemical Research
Additional Journal Information:
Journal Volume: 51; Journal Issue: 3; Journal ID: ISSN 0001-4842
Publisher:
American Chemical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE
OSTI Identifier:
1438326

Housel, Lisa M., Wang, Lei, Abraham, Alyson, Huang, Jianping, Renderos, Genesis D., Quilty, Calvin D., Brady, Alexander B., Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S.. Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage. United States: N. p., Web. doi:10.1021/acs.accounts.7b00478.
Housel, Lisa M., Wang, Lei, Abraham, Alyson, Huang, Jianping, Renderos, Genesis D., Quilty, Calvin D., Brady, Alexander B., Marschilok, Amy C., Takeuchi, Kenneth J., & Takeuchi, Esther S.. Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage. United States. doi:10.1021/acs.accounts.7b00478.
Housel, Lisa M., Wang, Lei, Abraham, Alyson, Huang, Jianping, Renderos, Genesis D., Quilty, Calvin D., Brady, Alexander B., Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S.. 2018. "Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage". United States. doi:10.1021/acs.accounts.7b00478.
@article{osti_1438326,
title = {Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage},
author = {Housel, Lisa M. and Wang, Lei and Abraham, Alyson and Huang, Jianping and Renderos, Genesis D. and Quilty, Calvin D. and Brady, Alexander B. and Marschilok, Amy C. and Takeuchi, Kenneth J. and Takeuchi, Esther S.},
abstractNote = {Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.},
doi = {10.1021/acs.accounts.7b00478},
journal = {Accounts of Chemical Research},
number = 3,
volume = 51,
place = {United States},
year = {2018},
month = {2}
}