skip to main content

DOE PAGESDOE PAGES

Title: Enhancing Dissociative Adsorption of Water on Cu(111) via Chemisorbed Oxygen

We have used X-ray photoelectron spectroscopy to study the dehydrogenation of H 2O molecules on the clean and oxygenated Cu(111) surfaces. The clean surface does not show reactivity toward H 2O dehydrogenation. By contrast, H 2O molecules on the oxygenated Cu(111) dissociate into OH species by reacting with chemisorbed oxygen until the complete consumption of the chemisorbed oxygen at which the surface loses its reactivity toward H 2O dehydrogenation. Increasing the temperature to 200 °C and above decreases molecularly adsorbed H 2O for dehydrogenation, thereby resulting in less loss of chemisorbed O. In conjunction with density-functional theory calculations, a three-step reaction pathway is proposed to account for the chemisorbed O assisted dehydrogenation of H 2O molecules and the net loss of surface oxygen. Finally, these results provide insight into understanding the elemental steps of the dehydrogenation of H 2O molecules and the controllable conditions for tuning H 2O dissociation on metal surfaces.
Authors:
 [1] ;  [2] ;  [3] ; ORCiD logo [1]
  1. State Univ. of New York, Binghamton, NY (United States). Dept. of Mechanical Engineering & Materials Science and Engineering Program
  2. State Univ. of New York, Binghamton, NY (United States). Dept. of Physics, Applied Physics and Astronomy & Materials Science and Engineering Program
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Publication Date:
Report Number(s):
BNL-205656-2018-JAAM
Journal ID: ISSN 1932-7447
Grant/Contract Number:
SC0012704; CMMI- 1056611; CBET-1264940
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 22; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1438301