skip to main content

DOE PAGESDOE PAGES

Title: Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis

In this study, lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple “upstream” (i.e., lignin bioengineering, lignin isolation and “early-stage catalytic conversion of lignin”) and “downstream” (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a “beginning-to-end” analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of ligninÏs biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.
Authors:
ORCiD logo [1] ;  [2] ;  [3] ;  [4] ;  [3] ; ORCiD logo [2] ;  [2]
  1. Imperial College London, London (United Kingdom)
  2. Utrecht Univ., Utrecht (The Netherlands)
  3. Max-Planck-Institut fur Kohlenforschung, Mulheim an der Ruhr (Germany)
  4. Univ. of Wisconsin, Madison, WI (United States)
Publication Date:
Grant/Contract Number:
FC02-07ER64494
Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 55; Journal Issue: 29; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Research Org:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; bioengineering; biorefining; catalysis; lignin; lignocellulose
OSTI Identifier:
1438202

Rinaldi, Roberto, Jastrzebski, Robin, Clough, Matthew T., Ralph, John, Kennema, Marco, Bruijnincx, Pieter C. A., and Weckhuysen, Bert M.. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. United States: N. p., Web. doi:10.1002/anie.201510351.
Rinaldi, Roberto, Jastrzebski, Robin, Clough, Matthew T., Ralph, John, Kennema, Marco, Bruijnincx, Pieter C. A., & Weckhuysen, Bert M.. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. United States. doi:10.1002/anie.201510351.
Rinaldi, Roberto, Jastrzebski, Robin, Clough, Matthew T., Ralph, John, Kennema, Marco, Bruijnincx, Pieter C. A., and Weckhuysen, Bert M.. 2016. "Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis". United States. doi:10.1002/anie.201510351. https://www.osti.gov/servlets/purl/1438202.
@article{osti_1438202,
title = {Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis},
author = {Rinaldi, Roberto and Jastrzebski, Robin and Clough, Matthew T. and Ralph, John and Kennema, Marco and Bruijnincx, Pieter C. A. and Weckhuysen, Bert M.},
abstractNote = {In this study, lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple “upstream” (i.e., lignin bioengineering, lignin isolation and “early-stage catalytic conversion of lignin”) and “downstream” (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a “beginning-to-end” analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of ligninÏs biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.},
doi = {10.1002/anie.201510351},
journal = {Angewandte Chemie (International Edition)},
number = 29,
volume = 55,
place = {United States},
year = {2016},
month = {6}
}

Works referenced in this record:

Catalytic Transformation of Lignin for the Production of Chemicals and Fuels
journal, October 2015

Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass
journal, September 2009
  • Singh, Seema; Simmons, Blake A.; Vogel, Kenneth P.
  • Biotechnology and Bioengineering, Vol. 104, Issue 1, p. 68-75
  • DOI: 10.1002/bit.22386

C-C or C-O Bond Cleavage in a Phenolic Lignin Model Compound: Selectivity Depends on Vanadium Catalyst
journal, January 2012
  • Hanson, Susan K.; Wu, Ruilian; Silks, Louis A. “Pete”
  • Angewandte Chemie International Edition, Vol. 51, Issue 14, p. 3410-3413
  • DOI: 10.1002/anie.201107020

Non-Oxidative Vanadium-Catalyzed C-O Bond Cleavage: Application to Degradation of Lignin Model Compounds
journal, April 2010
  • Son, Sunghee; Toste, F. Dean
  • Angewandte Chemie International Edition, Vol. 49, Issue 22, p. 3791-3794
  • DOI: 10.1002/anie.201001293

Combinatorial modification of multiple lignin traits in trees through multigene cotransformation
journal, March 2003
  • Li, L.; Zhou, Y.; Cheng, X.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 8, p. 4939-4944
  • DOI: 10.1073/pnas.0831166100

Catalytic hydrodeoxygenation
journal, June 2000

Pathways for degradation of lignin in bacteria and fungi
journal, January 2011
  • Bugg, Timothy D. H.; Ahmad, Mark; Hardiman, Elizabeth M.
  • Natural Product Reports, Vol. 28, Issue 12, p. 1883-1896
  • DOI: 10.1039/c1np00042j

Formic-acid-induced depolymerization of oxidized lignin to aromatics
journal, November 2014
  • Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.
  • Nature, Vol. 515, Issue 7526, p. 249-252
  • DOI: 10.1038/nature13867

Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review
journal, May 2006
  • Mohan, Dinesh; Pittman,, Charles U.; Steele, Philip H.
  • Energy & Fuels, Vol. 20, Issue 3, p. 848-889
  • DOI: 10.1021/ef0502397

The Catalytic Valorization of Lignin for the Production of Renewable Chemicals
journal, June 2010
  • Zakzeski, Joseph; Bruijnincx, Pieter C. A.; Jongerius, Anna L.
  • Chemical Reviews, Vol. 110, Issue 6, p. 3552-3599
  • DOI: 10.1021/cr900354u

Engineering plant cell walls: tuning lignin monomer composition for deconstructable biofuel feedstocks or resilient biomaterials
journal, January 2014
  • Ciesielski, Peter N.; Resch, Michael G.; Hewetson, Barron
  • Green Chemistry, Vol. 16, Issue 5, p. 2627-2635
  • DOI: 10.1039/c3gc42422g

Mild Heterogeneous Palladium-Catalyzed Cleavage of β-O-4′-Ether Linkages of Lignin Model Compounds and Native Lignin in Air
journal, November 2013
  • Galkin, Maxim V.; Sawadjoon, Supaporn; Rohde, Volker
  • ChemCatChem, Vol. 6, Issue 1, p. 179-184
  • DOI: 10.1002/cctc.201300540

Biomass conversion: Lignin up for break-down
journal, December 2014
  • Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.
  • Nature Chemistry, Vol. 6, Issue 12, p. 1035-1036
  • DOI: 10.1038/nchem.2120

Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields
journal, January 2006
  • Pan, Xuejun; Gilkes, Neil; Kadla, John
  • Biotechnology and Bioengineering, Vol. 94, Issue 5, p. 851-861
  • DOI: 10.1002/bit.20905

Fermentable sugars by chemical hydrolysis of biomass
journal, March 2010
  • Binder, J. B.; Raines, R. T.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 10, p. 4516-4521
  • DOI: 10.1073/pnas.0912073107

CCoAOMT suppression modifies lignin composition in Pinus radiata
journal, April 2011

Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin
journal, April 2013
  • Rahimi, Alireza; Azarpira, Ali; Kim, Hoon
  • Journal of the American Chemical Society, Vol. 135, Issue 17, p. 6415-6418
  • DOI: 10.1021/ja401793n

Effects of Coumarate 3-Hydroxylase Down-regulation on Lignin Structure
journal, January 2006
  • Ralph, John; Akiyama, Takuya; Kim, Hoon
  • Journal of Biological Chemistry, Vol. 281, Issue 13, p. 8843-8853
  • DOI: 10.1074/jbc.M511598200

Depolymerization of Cellulose Using Solid Catalysts in Ionic Liquids
journal, October 2008
  • Rinaldi, Roberto; Palkovits, Regina; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 47, Issue 42, p. 8047-8050
  • DOI: 10.1002/anie.200802879

A review of catalytic upgrading of bio-oil to engine fuels
journal, November 2011
  • Mortensen, P. M.; Grunwaldt, J.-D.; Jensen, P. A.
  • Applied Catalysis A: General, Vol. 407, Issue 1-2, p. 1-19
  • DOI: 10.1016/j.apcata.2011.08.046

Review of biomass pyrolysis oil properties and upgrading research
journal, January 2007

Identification of Grass-specific Enzyme That Acylates Monolignols with p-Coumarate
journal, January 2012
  • Withers, Saunia; Lu, Fachuang; Kim, Hoon
  • Journal of Biological Chemistry, Vol. 287, Issue 11, p. 8347-8355
  • DOI: 10.1074/jbc.M111.284497

Lignin valorization through integrated biological funneling and chemical catalysis
journal, August 2014
  • Linger, J. G.; Vardon, D. R.; Guarnieri, M. T.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 33, p. 12013-12018
  • DOI: 10.1073/pnas.1410657111

Liquid fuels, hydrogen and chemicals from lignin A critical review
journal, May 2013
  • Azadi, Pooya; Inderwildi, Oliver R.; Farnood, Ramin
  • Renewable and Sustainable Energy Reviews, Vol. 21, p. 506-523
  • DOI: 10.1016/j.rser.2012.12.022

Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone
journal, April 2014

Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process
journal, January 2013
  • Song, Qi; Wang, Feng; Cai, Jiaying
  • Energy & Environmental Science, Vol. 6, Issue 3, p. 994-1007
  • DOI: 10.1039/c2ee23741e

Recent developments in polymers derived from industrial lignin
journal, March 2015
  • Ten, Elena; Vermerris, Wilfred
  • Journal of Applied Polymer Science, Vol. 132, Issue 24, Article No. 42069
  • DOI: 10.1002/app.42069

Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids
journal, January 2004

Transcriptional networks for lignin biosynthesis: more complex than we thought?
journal, April 2011

Towards Quantitative Catalytic Lignin Depolymerization
journal, April 2011
  • Roberts, Virginia. M.; Stein, Valentin; Reiner, Thomas
  • Chemistry - A European Journal, Vol. 17, Issue 21, p. 5939-5948
  • DOI: 10.1002/chem.201002438

Chemical modification of lignins: Towards biobased polymers
journal, July 2014

Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass
journal, September 2007
  • Huber, George W.; Corma, Avelino
  • Angewandte Chemie International Edition, Vol. 46, Issue 38, p. 7184-7201
  • DOI: 10.1002/anie.200604504

Lignin Biosynthesis
journal, June 2003

Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts
journal, January 2010
  • Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A.
  • Chemical Communications, Vol. 46, Issue 3, p. 412-414
  • DOI: 10.1039/B916822B

Advances in modifying lignin for enhanced biofuel production
journal, June 2010
  • Simmons, Blake A.; Loqué, Dominique; Ralph, John
  • Current Opinion in Plant Biology, Vol. 13, Issue 3, p. 312-319
  • DOI: 10.1016/j.pbi.2010.03.001

Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis
journal, January 2013
  • Parsell, Trenton H.; Owen, Benjamin C.; Klein, Ian
  • Chem. Sci., Vol. 4, Issue 2, p. 806-813
  • DOI: 10.1039/C2SC21657D

Solvent Effects on the Hydrogenolysis of Diphenyl Ether with Raney Nickel and their Implications for the Conversion of Lignin
journal, April 2012

Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant
journal, March 2014
  • Bonawitz, Nicholas D.; Kim, Jeong Im; Tobimatsu, Yuki
  • Nature, Vol. 509, Issue 7500, p. 376-380
  • DOI: 10.1038/nature13084

Lignin Depolymerization and Conversion A Review of Thermochemical Methods
journal, November 2010
  • Pandey, M. P.; Kim, C. S.
  • Chemical Engineering & Technology, Vol. 34, Issue 1, p. 29-41
  • DOI: 10.1002/ceat.201000270

A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments
journal, November 2013
  • Sturgeon, Matthew R.; Kim, Seonah; Lawrence, Kelsey
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 3, p. 472-485
  • DOI: 10.1021/sc400384w

Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass
journal, February 2011
  • Fu, Chunxiang; Mielenz, Jonathan R.; Xiao, Xirong
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 9, p. 3803-3808
  • DOI: 10.1073/pnas.1100310108

Down-regulation of Cinnamoyl-CoA Reductase induces significant changes of lignin profiles in transgenic tobacco plants
journal, January 1998

Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes
journal, May 2009
  • Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A.
  • Angewandte Chemie International Edition, Vol. 48, Issue 22, p. 3987-3990
  • DOI: 10.1002/anie.200900404

Lignin Biosynthesis and Structure
journal, May 2010
  • Vanholme, R.; Demedts, B.; Morreel, K.
  • Plant Physiology, Vol. 153, Issue 3, p. 895-905
  • DOI: 10.1104/pp.110.155119

Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula
journal, September 2010
  • Zhou, Rui; Jackson, Lisa; Shadle, Gail
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 41, p. 17803-17808
  • DOI: 10.1073/pnas.1012900107

Lignin Pyrolysis Components and Upgrading—Technology Review
journal, February 2013