skip to main content


This content will become publicly available on January 25, 2019

Title: Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs is a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] more »;  [3] ;  [3] ;  [3] ;  [3] ;  [3] ;  [3] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1536-1055
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Fusion Science and Technology
Additional Journal Information:
Journal Volume: 73; Journal Issue: 3; Journal ID: ISSN 1536-1055
American Nuclear Society
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Double Shell, Inertial Confinement Fusion
OSTI Identifier: