skip to main content


This content will become publicly available on January 9, 2019

Title: Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
 [1] ; ORCiD logo [1] ;  [2]
  1. Univ. of California, Berkeley, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 1549-9618
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 14; Journal Issue: 2; Journal ID: ISSN 1549-9618
American Chemical Society
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Mathematics; Molecular Dynamics; polarizable force fields
OSTI Identifier: