skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime

Abstract

We present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasmamirror) laser interaction (~2.65 J, 30 fs, I > 1 ´ 1021Wcm-2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nmindicate the influence of relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-incell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ; ; ; ; ; ORCiD logo; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); German Federal Ministry of Education and Research (BMBF)
OSTI Identifier:
1437769
Alternate Identifier(s):
OSTI ID: 1430977; OSTI ID: 1515025
Report Number(s):
LLNL-JRNL-733302
Journal ID: ISSN 1367-2630
Grant/Contract Number:  
NA0003107; AC52-07NA27344
Resource Type:
Published Article
Journal Name:
New Journal of Physics
Additional Journal Information:
Journal Name: New Journal of Physics Journal Volume: 20 Journal Issue: 1; Journal ID: ISSN 1367-2630
Publisher:
IOP Publishing
Country of Publication:
United Kingdom
Language:
English
Subject:
42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Poole, P. L., Obst, L., Cochran, G. E., Metzkes, J., Schlenvoigt, H-P, Prencipe, I., Kluge, T., Cowan, T., Schramm, U., Schumacher, D. W., and Zeil, K. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime. United Kingdom: N. p., 2018. Web. https://doi.org/10.1088/1367-2630/aa9d47.
Poole, P. L., Obst, L., Cochran, G. E., Metzkes, J., Schlenvoigt, H-P, Prencipe, I., Kluge, T., Cowan, T., Schramm, U., Schumacher, D. W., & Zeil, K. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime. United Kingdom. https://doi.org/10.1088/1367-2630/aa9d47
Poole, P. L., Obst, L., Cochran, G. E., Metzkes, J., Schlenvoigt, H-P, Prencipe, I., Kluge, T., Cowan, T., Schramm, U., Schumacher, D. W., and Zeil, K. Mon . "Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime". United Kingdom. https://doi.org/10.1088/1367-2630/aa9d47.
@article{osti_1437769,
title = {Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime},
author = {Poole, P. L. and Obst, L. and Cochran, G. E. and Metzkes, J. and Schlenvoigt, H-P and Prencipe, I. and Kluge, T. and Cowan, T. and Schramm, U. and Schumacher, D. W. and Zeil, K.},
abstractNote = {We present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasmamirror) laser interaction (~2.65 J, 30 fs, I > 1 ´ 1021Wcm-2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nmindicate the influence of relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-incell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.},
doi = {10.1088/1367-2630/aa9d47},
journal = {New Journal of Physics},
number = 1,
volume = 20,
place = {United Kingdom},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1088/1367-2630/aa9d47

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review of laser-driven ion sources and their applications
journal, April 2012

  • Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S.
  • Reports on Progress in Physics, Vol. 75, Issue 5
  • DOI: 10.1088/0034-4885/75/5/056401

Making relativistic positrons using ultraintense short pulse lasers
journal, December 2009

  • Chen, Hui; Wilks, S. C.; Bonlie, J. D.
  • Physics of Plasmas, Vol. 16, Issue 12
  • DOI: 10.1063/1.3271355

Buffered high charge spectrally-peaked proton beams in the relativistic-transparency regime
journal, January 2016


Ultrafast X-ray Pulses from Laser-Produced Plasmas
journal, February 1991


Enhanced proton beams from ultrathin targets driven by high contrast laser pulses
journal, July 2006

  • Neely, D.; Foster, P.; Robinson, A.
  • Applied Physics Letters, Vol. 89, Issue 2
  • DOI: 10.1063/1.2220011

High contrast ion acceleration at intensities exceeding 1021 Wcm−2
journal, May 2013

  • Dollar, F.; Zulick, C.; Matsuoka, T.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803082

Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration
journal, September 2008

  • Badziak, J.; Jabłoński, S.; Parys, P.
  • Journal of Applied Physics, Vol. 104, Issue 6
  • DOI: 10.1063/1.2981199

Maximum Proton Energy above 85 MeV from the Relativistic Interaction of Laser Pulses with Micrometer Thick CH 2 Targets
journal, May 2016


Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses
journal, November 2012


Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets
journal, May 2000

  • Hatchett, Stephen P.; Brown, Curtis G.; Cowan, Thomas E.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874030

Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime
journal, December 2014


Electron Temperature Scaling in Laser Interaction with Solids
journal, November 2011


Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
journal, October 2015


The scaling of proton energies in ultrashort pulse laser plasma acceleration
journal, April 2010


Transition of Proton Energy Scaling Using an Ultrathin Target Irradiated by Linearly Polarized Femtosecond Laser Pulses
journal, October 2013


Ion acceleration by superintense laser-plasma interaction
journal, May 2013

  • Macchi, Andrea; Borghesi, Marco; Passoni, Matteo
  • Reviews of Modern Physics, Vol. 85, Issue 2
  • DOI: 10.1103/RevModPhys.85.751

Optimization of Laser-Generated Ion Beams
journal, June 2011

  • Steinke, S.; Schnürer, M.; Sokollik, T.
  • Contributions to Plasma Physics, Vol. 51, Issue 5
  • DOI: 10.1002/ctpp.201110015

Invited Review Article: “Hands-on” laser-driven ion acceleration: A primer for laser-driven source development and potential applications
journal, July 2016

  • Schreiber, J.; Bolton, P. R.; Parodi, K.
  • Review of Scientific Instruments, Vol. 87, Issue 7
  • DOI: 10.1063/1.4959198

Integrated simulation of the generation and transport of proton beams from laser-target interaction
journal, June 2006

  • Welch, D. R.; Rose, D. V.; Cuneo, M. E.
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2207587

GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner
journal, June 2006


Vacuum laser acceleration of relativistic electrons using plasma mirror injectors
journal, December 2015

  • Thévenet, M.; Leblanc, A.; Kahaly, S.
  • Nature Physics, Vol. 12, Issue 4
  • DOI: 10.1038/nphys3597

Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline
journal, January 2011

  • Yogo, A.; Maeda, T.; Hori, T.
  • Applied Physics Letters, Vol. 98, Issue 5
  • DOI: 10.1063/1.3551623

Rayleigh-Taylor Instability of an Ultrathin Foil Accelerated by the Radiation Pressure of an Intense Laser
journal, May 2012


Plasma Expansion into a Vacuum
journal, May 2003


Analytical Model for Ion Acceleration by High-Intensity Laser Pulses
journal, July 2006


Proton acceleration mechanisms in high-intensity laser interaction with thin foils
journal, June 2005

  • d’Humières, Emmanuel; Lefebvre, Erik; Gremillet, Laurent
  • Physics of Plasmas, Vol. 12, Issue 6
  • DOI: 10.1063/1.1927097

Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers
journal, June 2014

  • Poole, P. L.; Andereck, C. D.; Schumacher, D. W.
  • Physics of Plasmas, Vol. 21, Issue 6
  • DOI: 10.1063/1.4885100

Enhancement of Proton Acceleration by Hot-Electron Recirculation in Thin Foils Irradiated by Ultraintense Laser Pulses
journal, May 2002


Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers
journal, May 2003


Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids
journal, October 2000


Experiment and simulation of novel liquid crystal plasma mirrors for high contrast, intense laser pulses
journal, August 2016

  • Poole, P. L.; Krygier, A.; Cochran, G. E.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep32041

High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions
journal, May 2014

  • Green, J. S.; Robinson, A. P. L.; Booth, N.
  • Applied Physics Letters, Vol. 104, Issue 21
  • DOI: 10.1063/1.4879641

Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments
journal, July 2004


Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime
journal, April 2004


Absolute charge calibration of scintillating screens for relativistic electron detection
journal, March 2010

  • Buck, A.; Zeil, K.; Popp, A.
  • Review of Scientific Instruments, Vol. 81, Issue 3
  • DOI: 10.1063/1.3310275

Dose-dependent biological damage of tumour cells by laser-accelerated proton beams
journal, August 2010


Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system
journal, January 2012

  • Ogura, Koichi; Nishiuchi, Mamiko; Pirozhkov, Alexander S.
  • Optics Letters, Vol. 37, Issue 14
  • DOI: 10.1364/OL.37.002868

Diagnostic of laser contrast using target reflectivity
journal, June 2009

  • Pirozhkov, A. S.; Choi, I. W.; Sung, J. H.
  • Applied Physics Letters, Vol. 94, Issue 24
  • DOI: 10.1063/1.3148330

Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses
journal, October 2007


Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses
journal, December 2009


Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses
journal, July 2016

  • Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4958654

Feasibility of Using Laser Ion Accelerators in Proton Therapy
conference, January 2004

  • Bulanov, S. V.
  • THE PHYSICS OF IONIZED GASES: 22nd Summer School and International Symposium on the Physics of Ionized Gases; Invited Lectures, Topical Invited Lectures and Progress Reports, AIP Conference Proceedings
  • DOI: 10.1063/1.1843524

Direct observation of prompt pre-thermal laser ion sheath acceleration
journal, January 2012

  • Zeil, K.; Metzkes, J.; Kluge, T.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1883

The shaped critical surface in high intensity laser plasma interactions
journal, January 2011

  • Schumacher, D. W.; Kemp, G. E.; Link, A.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3532958

Focusing of short-pulse high-intensity laser-accelerated proton beams
journal, December 2011

  • Bartal, Teresa; Foord, Mark E.; Bellei, Claudio
  • Nature Physics, Vol. 8, Issue 2
  • DOI: 10.1038/nphys2153

Moderate repetition rate ultra-intense laser targets and optics using variable thickness liquid crystal films
journal, October 2016

  • Poole, P. L.; Willis, C.; Cochran, G. E.
  • Applied Physics Letters, Vol. 109, Issue 15
  • DOI: 10.1063/1.4964841

Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams
journal, October 2015


Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses
journal, April 2010


    Works referencing / citing this record:

    All-optical structuring of laser-driven proton beam profiles
    journal, December 2018

    • Obst-Huebl, Lieselotte; Ziegler, Tim; Brack, Florian-Emanuel
    • Nature Communications, Vol. 9, Issue 1
    • DOI: 10.1038/s41467-018-07756-z

    Target fabrication for laser-ion acceleration research at the Technological Laboratory of the LMU Munich
    journal, May 2019

    • Szerypo, J.; Ma, W.; Bothmann, G.
    • Matter and Radiation at Extremes, Vol. 4, Issue 3
    • DOI: 10.1063/1.5081807

    On-shot characterization of single plasma mirror temporal contrast improvement
    journal, March 2018

    • Obst, L.; Metzkes-Ng, J.; Bock, S.
    • Plasma Physics and Controlled Fusion, Vol. 60, Issue 5
    • DOI: 10.1088/1361-6587/aab3bb

    Enhanced electron acceleration in aligned nanowire arrays irradiated at highly relativistic intensities
    journal, November 2019

    • Moreau, A.; Hollinger, R.; Calvi, C.
    • Plasma Physics and Controlled Fusion, Vol. 62, Issue 1
    • DOI: 10.1088/1361-6587/ab4d0c

    Characteristics of ion beams generated in the interaction of ultra-short laser pulses with ultra-thin foils
    text, January 2020

    • McIlvenny, A.; Ahmed, H.; Scullion, C.
    • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
    • DOI: 10.15120/gsi-2020-00685

    Radiation Pressure-Driven Plasma Surface Dynamics in Ultra-Intense Laser Pulse Interactions with Ultra-Thin Foils
    journal, February 2018

    • Gonzalez-Izquierdo, Bruno; Capdessus, Remi; King, Martin
    • Applied Sciences, Vol. 8, Issue 3
    • DOI: 10.3390/app8030336