DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: U(VI) Reduction by Biogenic and Abiotic Hydroxycarbonate Green Rusts: Impacts on U(IV) Speciation and Stability Over Time

Abstract

Green rusts (GRs) are redox active FeII-FeIII minerals that form in the environment via various biotic and abiotic processes. Although both biogenic (BioGR) and abiotic (ChemGR) GRs have been shown to reduce UVI, the dynamics of the transformations and the speciation and stability of the resulting UIV phases are poorly understood. We used carbonate extraction and XAFS spectroscopy to investigate the products of UVI reduction by BioGR and ChemGR. The results show that both GRs can rapidly remove UVI from synthetic groundwater via reduction to UIV. The initial products in the ChemGR system are solids-associated UIV-carbonate complexes that gradually transform to nanocrystalline uraninite over time, leading to a decrease in the proportion of carbonate-extractable U from ~95% to ~10%. In contrast, solid-phase UIV atoms in the BioGR system remain relatively extractable, non-uraninite UIV species over the same reaction period. The presence of calcium and carbonate in groundwater significantly increase the extractability of UIV in the BioGR system. Furthermore, these data provide new insights into the transformations of U under anoxic conditions in groundwater that contains calcium and carbonate, and have major implications for predicting uranium stability within redox dynamic environments and designing approaches for the remediation of uranium-contaminated groundwater.

Authors:
 [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [4]
  1. China Univ. of Geosciences, Wuhan (China); Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States); Bulgarian Academy of Sciences, Sofia (Bulgaria)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Leeds, Leeds (United Kingdom)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1437378
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 52; Journal Issue: 8; Journal ID: ISSN 0013-936X
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yan, Sen, Boyanov, Maxim I., Mishra, Bhoopesh, Kemner, Kenneth M., and O'Loughlin, Edward J. U(VI) Reduction by Biogenic and Abiotic Hydroxycarbonate Green Rusts: Impacts on U(IV) Speciation and Stability Over Time. United States: N. p., 2018. Web. doi:10.1021/acs.est.7b06405.
Yan, Sen, Boyanov, Maxim I., Mishra, Bhoopesh, Kemner, Kenneth M., & O'Loughlin, Edward J. U(VI) Reduction by Biogenic and Abiotic Hydroxycarbonate Green Rusts: Impacts on U(IV) Speciation and Stability Over Time. United States. https://doi.org/10.1021/acs.est.7b06405
Yan, Sen, Boyanov, Maxim I., Mishra, Bhoopesh, Kemner, Kenneth M., and O'Loughlin, Edward J. Mon . "U(VI) Reduction by Biogenic and Abiotic Hydroxycarbonate Green Rusts: Impacts on U(IV) Speciation and Stability Over Time". United States. https://doi.org/10.1021/acs.est.7b06405. https://www.osti.gov/servlets/purl/1437378.
@article{osti_1437378,
title = {U(VI) Reduction by Biogenic and Abiotic Hydroxycarbonate Green Rusts: Impacts on U(IV) Speciation and Stability Over Time},
author = {Yan, Sen and Boyanov, Maxim I. and Mishra, Bhoopesh and Kemner, Kenneth M. and O'Loughlin, Edward J.},
abstractNote = {Green rusts (GRs) are redox active FeII-FeIII minerals that form in the environment via various biotic and abiotic processes. Although both biogenic (BioGR) and abiotic (ChemGR) GRs have been shown to reduce UVI, the dynamics of the transformations and the speciation and stability of the resulting UIV phases are poorly understood. We used carbonate extraction and XAFS spectroscopy to investigate the products of UVI reduction by BioGR and ChemGR. The results show that both GRs can rapidly remove UVI from synthetic groundwater via reduction to UIV. The initial products in the ChemGR system are solids-associated UIV-carbonate complexes that gradually transform to nanocrystalline uraninite over time, leading to a decrease in the proportion of carbonate-extractable U from ~95% to ~10%. In contrast, solid-phase UIV atoms in the BioGR system remain relatively extractable, non-uraninite UIV species over the same reaction period. The presence of calcium and carbonate in groundwater significantly increase the extractability of UIV in the BioGR system. Furthermore, these data provide new insights into the transformations of U under anoxic conditions in groundwater that contains calcium and carbonate, and have major implications for predicting uranium stability within redox dynamic environments and designing approaches for the remediation of uranium-contaminated groundwater.},
doi = {10.1021/acs.est.7b06405},
journal = {Environmental Science and Technology},
number = 8,
volume = 52,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Speciation of Uranium in Sediments before and after In situ Biostimulation
journal, March 2008

  • Kelly, Shelly D.; Kemner, Kenneth M.; Carley, Jack
  • Environmental Science & Technology, Vol. 42, Issue 5
  • DOI: 10.1021/es071764i

Uranium redox transition pathways in acetate-amended sediments
journal, March 2013

  • Bargar, J. R.; Williams, K. H.; Campbell, K. M.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 12
  • DOI: 10.1073/pnas.1219198110

Evaluating Chemical Extraction Techniques for the Determination of Uranium Oxidation State in Reduced Aquifer Sediments
journal, August 2013

  • Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.
  • Environmental Science & Technology, Vol. 47, Issue 16
  • DOI: 10.1021/es401450v

Solution and Microbial Controls on the Formation of Reduced U(IV) Species
journal, October 2011

  • Boyanov, Maxim I.; Fletcher, Kelly E.; Kwon, Man Jae
  • Environmental Science & Technology, Vol. 45, Issue 19
  • DOI: 10.1021/es2014049

Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV–phosphate
journal, February 2016

  • Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh
  • Geochimica et Cosmochimica Acta, Vol. 174
  • DOI: 10.1016/j.gca.2015.11.010

Surface area effects on the reduction of UVI in the presence of synthetic montmorillonite
journal, August 2017


Green rust formation controls nutrient availability in a ferruginous water column
journal, July 2012

  • Zegeye, Asfaw; Bonneville, Steeve; Benning, Liane G.
  • Geology, Vol. 40, Issue 7
  • DOI: 10.1130/G32959.1

Identification of Green Rust in Groundwater
journal, May 2009

  • Christiansen, B. C.; Balic-Zunic, T.; Dideriksen, K.
  • Environmental Science & Technology, Vol. 43, Issue 10
  • DOI: 10.1021/es8011047

Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient
journal, January 2014

  • Johnson, Carol A.; Freyer, Gina; Fabisch, Maria
  • Environmental Chemistry, Vol. 11, Issue 4
  • DOI: 10.1071/EN13184

Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies
journal, March 1997


Thermodynamic Equilibria in Aqueous Suspensions of Synthetic and Natural Fe(II)−Fe(III) Green Rusts:  Occurrences of the Mineral in Hydromorphic Soils
journal, April 1998

  • Génin, Jean-Marie R.; Bourrié, Guilhem; Trolard, Fabienne
  • Environmental Science & Technology, Vol. 32, Issue 8
  • DOI: 10.1021/es970547m

In situ Mössbauer spectroscopy: Evidence for green rust (fougerite) in a gleysol and its mineralogical transformations with time and depth
journal, September 2005

  • Feder, Frédéric; Trolard, Fabienne; Klingelhöfer, Göstar
  • Geochimica et Cosmochimica Acta, Vol. 69, Issue 18
  • DOI: 10.1016/j.gca.2005.03.042

Identification of green rust in an ochre sludge
journal, December 1991


Fe(II)/Fe(III) ‘green rust’ developed within ochreous coal mine drainage sediment in South Wales, UK
journal, December 2006


Arsenic sequestration by sorption processes in high-iron sediments
journal, December 2007

  • Root, Robert A.; Dixit, Suvasis; Campbell, Kate M.
  • Geochimica et Cosmochimica Acta, Vol. 71, Issue 23
  • DOI: 10.1016/j.gca.2007.04.038

Abiotic Transformation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Green Rusts
journal, June 2008

  • Larese-Casanova, Philip; Scherer, Michelle M.
  • Environmental Science & Technology, Vol. 42, Issue 11
  • DOI: 10.1021/es702390b

Reduction of Halogenated Ethanes by Green rust
journal, January 2004

  • O'Loughlin, Edward J.; Burris, David R.
  • Environmental Toxicology and Chemistry, Vol. 23, Issue 1
  • DOI: 10.1897/03-45

Kinetics of Cr(VI) Reduction by Carbonate Green Rust
journal, September 2001

  • Williams, Aaron G. B.; Scherer, Michelle M.
  • Environmental Science & Technology, Vol. 35, Issue 17
  • DOI: 10.1021/es010579g

Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust
journal, November 2003


Nitrite Reduction by Biogenic Hydroxycarbonate Green Rusts: Evidence for Hydroxy-nitrite Green Rust Formation as an Intermediate Reaction Product
journal, March 2014

  • Guerbois, Delphine; Ona-Nguema, Georges; Morin, Guillaume
  • Environmental Science & Technology, Vol. 48, Issue 8
  • DOI: 10.1021/es404009k

Fougerite: From field experiment to the homologation of the mineral
journal, December 2006


Bioreduction of ferric species and biogenesis of green rusts in soils
journal, June 2006

  • Berthelin, Jacques; Ona-Nguema, Georges; Stemmler, Sébastien
  • Comptes Rendus Geoscience, Vol. 338, Issue 6-7
  • DOI: 10.1016/j.crte.2006.04.013

Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe(II)
journal, June 2001


Green Rust Formation during Fe(II) Oxidation by the Nitrate-Reducing Acidovorax sp. Strain BoFeN1
journal, January 2012

  • Pantke, Claudia; Obst, Martin; Benzerara, Karim
  • Environmental Science & Technology, Vol. 46, Issue 3
  • DOI: 10.1021/es2016457

Formation of green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite)
journal, August 2012


Abiotic Process for Fe(II) Oxidation and Green Rust Mineralization Driven by a Heterotrophic Nitrate Reducing Bacteria ( Klebsiella mobilis )
journal, March 2014

  • Etique, Marjorie; Jorand, Frédéric P. A.; Zegeye, Asfaw
  • Environmental Science & Technology, Vol. 48, Issue 7
  • DOI: 10.1021/es403358v

Effects of Phosphate on Secondary Mineral Formation During the Bioreduction of Akaganeite (.β-FeOOH): Green Rust Versus Framboidal Magnetite
journal, July 2015


Magnetite as a precursor for green rust through the hydrogenotrophic activity of the iron-reducing bacteria Shewanella putrefaciens
journal, December 2015

  • Etique, M.; Jorand, F. P. A.; Ruby, C.
  • Geobiology, Vol. 14, Issue 3
  • DOI: 10.1111/gbi.12170

Origin of the Differential Nanoscale Reactivity of Biologically and Chemically Formed Green Rust Crystals Investigated by Chemical Force Spectroscopy
journal, March 2014

  • Zegeye, Asfaw; Etique, Marjorie; Carteret, Cédric
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp500462r

Reduction of Uranium(VI) by Mixed Iron(II)/Iron(III) Hydroxide (Green Rust):  Formation of UO 2 Nanoparticles
journal, February 2003

  • O'Loughlin, Edward J.; Kelly, Shelly D.; Cook, Russell E.
  • Environmental Science & Technology, Vol. 37, Issue 4
  • DOI: 10.1021/es0208409

XAFS Investigation of the Interactions of U VI with Secondary Mineralization Products from the Bioreduction of Fe III Oxides
journal, March 2010

  • O’Loughlin, Edward J.; Kelly, Shelly D.; Kemner, Kenneth M.
  • Environmental Science & Technology, Vol. 44, Issue 5
  • DOI: 10.1021/es9027953

Reaction of Uranium(VI) with Green Rusts: Effect of Interlayer Anion
journal, July 2015


Inhibition of Bacterial U(VI) Reduction by Calcium
journal, May 2003

  • Brooks, Scott C.; Fredrickson, James K.; Carroll, Sue L.
  • Environmental Science & Technology, Vol. 37, Issue 9
  • DOI: 10.1021/es0210042

The anionic species competition in iron aqueous corrosion: Role of various green rust compounds
journal, September 1997


Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions
journal, September 1998


Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments
journal, March 2012

  • Lee, Ji-Hoon; Fredrickson, James K.; Kukkadapu, Ravi K.
  • Environmental Science & Technology, Vol. 46, Issue 7
  • DOI: 10.1021/es204528m

Ferrozine---a new spectrophotometric reagent for iron
journal, June 1970

  • Stookey, Lawrence L.
  • Analytical Chemistry, Vol. 42, Issue 7, p. 779-781
  • DOI: 10.1021/ac60289a016

The effect of sample matrix quenching on the measurement of trace uranium concentrations in aqueous solutions using kinetic phosphorimetry
journal, August 1998

  • Sowder, A. G.; Clark, S. B.; Fjeld, R. A.
  • Journal of Radioanalytical and Nuclear Chemistry, Vol. 234, Issue 1-2
  • DOI: 10.1007/BF02389781

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite
journal, February 2013

  • Veeramani, Harish; Scheinost, Andreas C.; Monsegue, Niven
  • Environmental Science & Technology, Vol. 47, Issue 5
  • DOI: 10.1021/es304025x

Products of abiotic U(VI) reduction by biogenic magnetite and vivianite
journal, May 2011

  • Veeramani, Harish; Alessi, Daniel S.; Suvorova, Elena I.
  • Geochimica et Cosmochimica Acta, Vol. 75, Issue 9
  • DOI: 10.1016/j.gca.2011.02.024

Reductive Precipitation of Uranium(VI) by Zero-Valent Iron
journal, November 1998

  • Gu, B.; Liang, L.; Dickey, M. J.
  • Environmental Science & Technology, Vol. 32, Issue 21
  • DOI: 10.1021/es980010o

Uranium(VI) Removal by Nanoscale Zerovalent Iron in Anoxic Batch Systems
journal, October 2010

  • Yan, Sen; Hua, Bin; Bao, Zhengyu
  • Environmental Science & Technology, Vol. 44, Issue 20
  • DOI: 10.1021/es9036308

Quantitative Separation of Monomeric U(IV) from UO 2 in Products of U(VI) Reduction
journal, May 2012

  • Alessi, Daniel S.; Uster, Benjamin; Veeramani, Harish
  • Environmental Science & Technology, Vol. 46, Issue 11
  • DOI: 10.1021/es204123z

Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites
journal, January 2014

  • Latta, Drew E.; Mishra, Bhoopesh; Cook, Russell E.
  • Environmental Science & Technology, Vol. 48, Issue 3
  • DOI: 10.1021/es4047389

U(VI) Reduction to Mononuclear U(IV) by Desulfitobacterium Species
journal, June 2010

  • Fletcher, Kelly E.; Boyanov, Maxim I.; Thomas, Sara H.
  • Environmental Science & Technology, Vol. 44, Issue 12
  • DOI: 10.1021/es903636c

Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure [Low-temperature ordered phase of CaU(PO4)2: synthesis and crystal structure]
journal, July 1996

  • Dusausoy, Yves; Ghermani, Nοur-Eddine; Podor, Renaud
  • European Journal of Mineralogy, Vol. 8, Issue 4
  • DOI: 10.1127/ejm/8/4/0667

Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS
journal, April 2007

  • Boyanov, Maxim I.; O’Loughlin, Edward J.; Roden, Eric E.
  • Geochimica et Cosmochimica Acta, Vol. 71, Issue 8
  • DOI: 10.1016/j.gca.2007.01.025

Uranium(IV) adsorption by natural organic matter in anoxic sediments
journal, January 2017

  • Bone, Sharon E.; Dynes, James J.; Cliff, John
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 4
  • DOI: 10.1073/pnas.1611918114

Formation of Ferrihydrite and Associated Iron Corrosion Products in Permeable Reactive Barriers of Zero-Valent Iron
journal, December 2002

  • Furukawa, Yoko; Kim, Jin-wook; Watkins, Janet
  • Environmental Science & Technology, Vol. 36, Issue 24
  • DOI: 10.1021/es025533h

Mineralogical Characteristics and Transformations during Long‐Term Operation of a Zerovalent Iron Reactive Barrier
journal, November 2003

  • Phillips, D. H.; Watson, D. B.; Roh, Y.
  • Journal of Environmental Quality, Vol. 32, Issue 6
  • DOI: 10.2134/jeq2003.2033

Quantifying Constraints Imposed by Calcium and Iron on Bacterial Reduction of Uranium(VI)
journal, January 2007

  • Stewart, Brandy D.; Neiss, Jim; Fendorf, Scott
  • Journal of Environment Quality, Vol. 36, Issue 2
  • DOI: 10.2134/jeq2006.0058

Works referencing / citing this record:

Electron Donor Utilization and Secondary Mineral Formation during the Bioreduction of Lepidocrocite by Shewanella putrefaciens CN32
journal, July 2019

  • O’Loughlin, Edward J.; Gorski, Christopher A.; Flynn, Theodore M.
  • Minerals, Vol. 9, Issue 7
  • DOI: 10.3390/min9070434