skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A general-purpose machine learning framework for predicting properties of inorganic materials

Abstract

A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method for partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.

Authors:
ORCiD logo [1];  [2];  [2];  [1]
  1. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
  2. Northwestern Univ., Evanston, IL (United States). Dept. of Electrical Engineering and Computer Science
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); US Dept. of Commerce; USDOD; US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1437349
Grant/Contract Number:  
SC0007456; N66001-15-C-4036; IIS-1343639; CCF-1409601; FA9550-12-1-0458
Resource Type:
Accepted Manuscript
Journal Name:
npj Computational Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 1; Journal ID: ISSN 2057-3960
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Ward, Logan, Agrawal, Ankit, Choudhary, Alok, and Wolverton, Christopher. A general-purpose machine learning framework for predicting properties of inorganic materials. United States: N. p., 2016. Web. doi:10.1038/npjcompumats.2016.28.
Ward, Logan, Agrawal, Ankit, Choudhary, Alok, & Wolverton, Christopher. A general-purpose machine learning framework for predicting properties of inorganic materials. United States. doi:10.1038/npjcompumats.2016.28.
Ward, Logan, Agrawal, Ankit, Choudhary, Alok, and Wolverton, Christopher. Fri . "A general-purpose machine learning framework for predicting properties of inorganic materials". United States. doi:10.1038/npjcompumats.2016.28. https://www.osti.gov/servlets/purl/1437349.
@article{osti_1437349,
title = {A general-purpose machine learning framework for predicting properties of inorganic materials},
author = {Ward, Logan and Agrawal, Ankit and Choudhary, Alok and Wolverton, Christopher},
abstractNote = {A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method for partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.},
doi = {10.1038/npjcompumats.2016.28},
journal = {npj Computational Materials},
number = 1,
volume = 2,
place = {United States},
year = {2016},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 93 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science
journal, April 2016

  • Agrawal, Ankit; Choudhary, Alok
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4946894

A search model for topological insulators with high-throughput robustness descriptors
journal, May 2012

  • Yang, Kesong; Setyawan, Wahyu; Wang, Shidong
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3332

Sparse representation for a potential energy surface
journal, July 2014


Combinatorial development of bulk metallic glasses
journal, April 2014

  • Ding, Shiyan; Liu, Yanhui; Li, Yanglin
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3939

Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression
journal, February 2016


Formation and High Mechanical Strength of Bulk Glassy Alloys in Zr-Al-Co-Cu System
journal, January 2003


Dissolving the Periodic Table in Cubic Zirconia: Data Mining to Discover Chemical Trends
journal, March 2014

  • Meredig, Bryce; Wolverton, C.
  • Chemistry of Materials, Vol. 26, Issue 6
  • DOI: 10.1021/cm403727z

High-Throughput Computational Screening of New Li-Ion Battery Anode Materials
journal, September 2012

  • Kirklin, Scott; Meredig, Bryce; Wolverton, Chris
  • Advanced Energy Materials, Vol. 3, Issue 2
  • DOI: 10.1002/aenm.201200593

Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations
journal, January 2015

  • Liu, Miao; Rong, Ziqin; Malik, Rahul
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03389B

Data Mined Ionic Substitutions for the Discovery of New Compounds
journal, January 2011

  • Hautier, Geoffroy; Fischer, Chris; Ehrlacher, Virginie
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102031h

Materials Informatics: The Materials “Gene” and Big Data
journal, July 2015


Perspective: Codesign for materials science: An optimal learning approach
journal, April 2016

  • Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4944627

Artificial neural network aided design of catalyst for propane ammoxidation
journal, November 1997


Stabilization of metallic supercooled liquid and bulk amorphous alloys
journal, January 2000


Big–deep–smart data in imaging for guiding materials design
journal, September 2015

  • Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4395

Informatics-aided bandgap engineering for solar materials
journal, February 2014


Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds
journal, March 2015

  • Gautier, Romain; Zhang, Xiuwen; Hu, Linhua
  • Nature Chemistry, Vol. 7, Issue 4
  • DOI: 10.1038/nchem.2207

The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Rotation Forest: A New Classifier Ensemble Method
journal, October 2006

  • Rodriguez, J. J.; Kuncheva, L. I.; Alonso, C. J.
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, Issue 10
  • DOI: 10.1109/TPAMI.2006.211

Predicting Crystal Structures with Data Mining of Quantum Calculations
journal, September 2003


Vegard’s law
journal, March 1991


Materials Data Science: Current Status and Future Outlook
journal, July 2015


Data mining our way to the next generation of thermoelectrics
journal, January 2016


Formation of Bulk Metallic Glasses and Their Composites
journal, August 2007


The random subspace method for constructing decision forests
journal, January 1998

  • Tin Kam Ho,
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, Issue 8
  • DOI: 10.1109/34.709601

Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification
journal, April 2016

  • Mulholland, Gregory J.; Paradiso, Sean P.
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4945422

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


Information-Theoretic Approach for the Discovery of Design Rules for Crystal Chemistry
journal, June 2012

  • Kong, Chang Sun; Luo, Wei; Arapan, Sergiu
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 7
  • DOI: 10.1021/ci200628z

Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Bulk metallic glasses
journal, June 2004

  • Wang, W. H.; Dong, C.; Shek, C. H.
  • Materials Science and Engineering: R: Reports, Vol. 44, Issue 2-3
  • DOI: 10.1016/j.mser.2004.03.001

ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins
journal, May 2015


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Data-driven atomic environment prediction for binaries using the Mendeleev number
journal, March 2004


Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


“Property Phase Diagrams” for Compound Semiconductors through Data Mining
journal, January 2013

  • Srinivasan, Srikant; Rajan, Krishna
  • Materials, Vol. 6, Issue 1
  • DOI: 10.3390/ma6010279

Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


A high-throughput infrastructure for density functional theory calculations
journal, June 2011


AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


δ TRIP steel
journal, July 2007

  • Chatterjee, S.; Murugananth, M.; Bhadeshia, H. K. D. H.
  • Materials Science and Technology, Vol. 23, Issue 7
  • DOI: 10.1179/174328407X179746

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Data-mined similarity function between material compositions
journal, December 2013


Random Forests
journal, January 2001


Materials informatics
journal, October 2005


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


On the Design, Analysis, and Characterization of Materials Using Computational Neural Networks
journal, August 1996


Predicting crystal structure by merging data mining with quantum mechanics
journal, July 2006

  • Fischer, Christopher C.; Tibbetts, Kevin J.; Morgan, Dane
  • Nature Materials, Vol. 5, Issue 8
  • DOI: 10.1038/nmat1691

The WEKA data mining software: an update
journal, November 2009

  • Hall, Mark; Frank, Eibe; Holmes, Geoffrey
  • ACM SIGKDD Explorations Newsletter, Vol. 11, Issue 1
  • DOI: 10.1145/1656274.1656278

Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally
journal, May 2012

  • Chen, Hailong; Hautier, Geoffroy; Jain, Anubhav
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm203243x

Performance of neural networks in materials science
journal, April 2009

  • Bhadeshia, H. K. D. H.; Dimitriu, R. C.; Forsik, S.
  • Materials Science and Technology, Vol. 25, Issue 4
  • DOI: 10.1179/174328408X311053

    Works referencing / citing this record:

    Deep learning and the Schrödinger equation
    journal, October 2017


    Exploring effective charge in electromigration using machine learning
    journal, May 2019

    • Liu, Yu-chen; Afflerbach, Benjamin; Jacobs, Ryan
    • MRS Communications, Vol. 9, Issue 02
    • DOI: 10.1557/mrc.2019.63

    Deep neural networks for accurate predictions of crystal stability
    journal, September 2018


    Band Gap Prediction for Large Organic Crystal Structures with Machine Learning
    journal, July 2019

    • Olsthoorn, Bart; Geilhufe, R. Matthias; Borysov, Stanislav S.
    • Advanced Quantum Technologies, Vol. 2, Issue 7-8
    • DOI: 10.1002/qute.201900023

    Predicting the Tensile Behaviour of Cast Alloys by a Pattern Recognition Analysis on Experimental Data
    journal, May 2019

    • Fragassa, Cristiano; Babic, Matej; Bergmann, Carlos Perez
    • Metals, Vol. 9, Issue 5
    • DOI: 10.3390/met9050557

    EDISON‐DATA: A flexible and extensible platform for processing and analysis of computational science data
    journal, July 2019

    • Ahn, Sunil; Lee, Jeongcheol; Kim, Jaesung
    • Software: Practice and Experience, Vol. 49, Issue 10
    • DOI: 10.1002/spe.2732

    Recent advances and applications of machine learning in solid-state materials science
    journal, August 2019

    • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0221-0

    An open experimental database for exploring inorganic materials
    journal, April 2018

    • Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus
    • Scientific Data, Vol. 5, Issue 1
    • DOI: 10.1038/sdata.2018.53

    Enumeration of de novo inorganic complexes for chemical discovery and machine learning
    journal, January 2020

    • Gugler, Stefan; Janet, Jon Paul; Kulik, Heather J.
    • Molecular Systems Design & Engineering, Vol. 5, Issue 1
    • DOI: 10.1039/c9me00069k

    A quantitative uncertainty metric controls error in neural network-driven chemical discovery
    journal, January 2019

    • Janet, Jon Paul; Duan, Chenru; Yang, Tzuhsiung
    • Chemical Science, Vol. 10, Issue 34
    • DOI: 10.1039/c9sc02298h

    Band Gap Prediction for Large Organic Crystal Structures with Machine Learning
    journal, July 2019

    • Olsthoorn, Bart; Geilhufe, R. Matthias; Borysov, Stanislav S.
    • Advanced Quantum Technologies, Vol. 2, Issue 7-8
    • DOI: 10.1002/qute.201900023

    EDISON‐DATA: A flexible and extensible platform for processing and analysis of computational science data
    journal, July 2019

    • Ahn, Sunil; Lee, Jeongcheol; Kim, Jaesung
    • Software: Practice and Experience, Vol. 49, Issue 10
    • DOI: 10.1002/spe.2732

    Deep neural networks for accurate predictions of crystal stability
    journal, September 2018


    Recent advances and applications of machine learning in solid-state materials science
    journal, August 2019

    • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0221-0

    An open experimental database for exploring inorganic materials
    journal, April 2018

    • Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus
    • Scientific Data, Vol. 5, Issue 1
    • DOI: 10.1038/sdata.2018.53

    Enumeration of de novo inorganic complexes for chemical discovery and machine learning
    journal, January 2020

    • Gugler, Stefan; Janet, Jon Paul; Kulik, Heather J.
    • Molecular Systems Design & Engineering, Vol. 5, Issue 1
    • DOI: 10.1039/c9me00069k

    A quantitative uncertainty metric controls error in neural network-driven chemical discovery
    journal, January 2019

    • Janet, Jon Paul; Duan, Chenru; Yang, Tzuhsiung
    • Chemical Science, Vol. 10, Issue 34
    • DOI: 10.1039/c9sc02298h

    Deep learning and the Schrödinger equation
    journal, October 2017


    Exploring effective charge in electromigration using machine learning
    journal, May 2019

    • Liu, Yu-chen; Afflerbach, Benjamin; Jacobs, Ryan
    • MRS Communications, Vol. 9, Issue 02
    • DOI: 10.1557/mrc.2019.63

    Predicting the Tensile Behaviour of Cast Alloys by a Pattern Recognition Analysis on Experimental Data
    journal, May 2019

    • Fragassa, Cristiano; Babic, Matej; Bergmann, Carlos Perez
    • Metals, Vol. 9, Issue 5
    • DOI: 10.3390/met9050557