DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room-Temperature Li-S and Na-S Batteries

Abstract

Abstract Room‐temperature Li/Na‐S batteries are promising energy storage solutions, but unfortunately suffer from serious cycling problems rooted in their polysulfide intermediates. The conventional strategy to tackle this issue is to design host materials for trapping polysulfides via weak physical confinement and interfacial chemical interactions. Even though beneficial, their capability for the polysulfide immobilization is still limited. Herein, the unique sulfiphilic nature of metallic Cu is revisited. Upon the exposure to polysulfide in aqueous or aprotic solution, the surface sulfidization rapidly takes place, resulting in the formation of Cu 2 S nanoflake arrays with tunable texture. When the sulfidized Cu current collector is directly used as the sulfur‐equivalent cathode, it enables high‐performance Li/Na‐S batteries at room temperature with reasonable high sulfur loading. Specific capacities up to ≈1200 mAh g −1 for Li‐S and ≈400 mAh g −1 for Na‐S are measured when normalized to the amount of equivalent sulfur, and can be readily sustained for >1000 cycles.

Authors:
 [1];  [2];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2]
  1. Soochow Univ., Suzhou (China)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1480523
Alternate Identifier(s):
OSTI ID: 1437316
Grant/Contract Number:  
AC02-06CH11357; DE‐AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 22; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Li-S batteries; Na-S batteries; chemical immobilization of polysulfide; sulfiphilic Cu foam; sulfur-equivalent cathodes

Citation Formats

Li, Peirong, Ma, Lu, Wu, Tianpin, Ye, Hualin, Zhou, Junhua, Zhao, Feipeng, Han, Na, Wang, Yeyun, Wu, Yunling, Li, Yanguang, and Lu, Jun. Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room-Temperature Li-S and Na-S Batteries. United States: N. p., 2018. Web. doi:10.1002/aenm.201800624.
Li, Peirong, Ma, Lu, Wu, Tianpin, Ye, Hualin, Zhou, Junhua, Zhao, Feipeng, Han, Na, Wang, Yeyun, Wu, Yunling, Li, Yanguang, & Lu, Jun. Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room-Temperature Li-S and Na-S Batteries. United States. https://doi.org/10.1002/aenm.201800624
Li, Peirong, Ma, Lu, Wu, Tianpin, Ye, Hualin, Zhou, Junhua, Zhao, Feipeng, Han, Na, Wang, Yeyun, Wu, Yunling, Li, Yanguang, and Lu, Jun. Wed . "Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room-Temperature Li-S and Na-S Batteries". United States. https://doi.org/10.1002/aenm.201800624. https://www.osti.gov/servlets/purl/1480523.
@article{osti_1480523,
title = {Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Room-Temperature Li-S and Na-S Batteries},
author = {Li, Peirong and Ma, Lu and Wu, Tianpin and Ye, Hualin and Zhou, Junhua and Zhao, Feipeng and Han, Na and Wang, Yeyun and Wu, Yunling and Li, Yanguang and Lu, Jun},
abstractNote = {Abstract Room‐temperature Li/Na‐S batteries are promising energy storage solutions, but unfortunately suffer from serious cycling problems rooted in their polysulfide intermediates. The conventional strategy to tackle this issue is to design host materials for trapping polysulfides via weak physical confinement and interfacial chemical interactions. Even though beneficial, their capability for the polysulfide immobilization is still limited. Herein, the unique sulfiphilic nature of metallic Cu is revisited. Upon the exposure to polysulfide in aqueous or aprotic solution, the surface sulfidization rapidly takes place, resulting in the formation of Cu 2 S nanoflake arrays with tunable texture. When the sulfidized Cu current collector is directly used as the sulfur‐equivalent cathode, it enables high‐performance Li/Na‐S batteries at room temperature with reasonable high sulfur loading. Specific capacities up to ≈1200 mAh g −1 for Li‐S and ≈400 mAh g −1 for Na‐S are measured when normalized to the amount of equivalent sulfur, and can be readily sustained for >1000 cycles.},
doi = {10.1002/aenm.201800624},
journal = {Advanced Energy Materials},
number = 22,
volume = 8,
place = {United States},
year = {Wed May 16 00:00:00 EDT 2018},
month = {Wed May 16 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Photographs of different metal strips immersed in the orange colored Na2S4 aqueous solution and (inserts) their visible surface change after taken out. Cu was the only metal that readily reacted with polysulfide.

Save / Share:

Works referenced in this record:

Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Copper-Stabilized Sulfur-Microporous Carbon Cathodes for Li-S Batteries
journal, March 2014

  • Zheng, Shiyou; Yi, Feng; Li, Zhipeng
  • Advanced Functional Materials, Vol. 24, Issue 26
  • DOI: 10.1002/adfm.201304156

High performance stoichiometric Cu2S cathode on carbon fiber current collector for lithium batteries
journal, January 2017


A Nitrogen and Sulfur Dual-Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced Lithium-Sulfur Batteries
journal, August 2015


Room-Temperature Sodium-Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry
journal, June 2017

  • Wang, Yun-Xiao; Zhang, Binwei; Lai, Weihong
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201602829

Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium–sulfur battery
journal, November 2014


Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries
journal, January 2015

  • Adelhelm, Philipp; Hartmann, Pascal; Bender, Conrad L.
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.105

Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries
journal, February 2015

  • Liang, Xiao; Garsuch, Arnd; Nazar, Linda F.
  • Angewandte Chemie International Edition, Vol. 54, Issue 13
  • DOI: 10.1002/anie.201410174

Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition
journal, February 2014


Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries
journal, June 2013

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Angewandte Chemie International Edition, Vol. 52, Issue 29
  • DOI: 10.1002/anie.201300680

Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium-Sulfur Batteries
journal, July 2014

  • Yuan, Zhe; Peng, Hong-Jie; Huang, Jia-Qi
  • Advanced Functional Materials, Vol. 24, Issue 39
  • DOI: 10.1002/adfm.201401501

Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

A graphene-like metallic cathode host for long-life and high-loading lithium–sulfur batteries
journal, January 2016

  • Pang, Quan; Kundu, Dipan; Nazar, Linda F.
  • Materials Horizons, Vol. 3, Issue 2
  • DOI: 10.1039/C5MH00246J

One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature
journal, August 2013

  • Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402513x

Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix
journal, January 2015

  • Park, Kyusung; Cho, Joon Hee; Jang, Ji-Hoon
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01809A

Liquid-Type Cathode Enabled by 3D Sponge-Like Carbon Nanotubes for High Energy Density and Long Cycling Life of Li-S Batteries
journal, October 2014


Review—The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries
journal, January 2015

  • Pang, Quan; Liang, Xiao; Kwok, C. Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0171514jes

Lithium-Sulfur Batteries: Progress and Prospects
journal, February 2015

  • Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi
  • Advanced Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adma.201405115

Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
journal, August 2014

  • Pang, Quan; Kundu, Dipan; Cuisinier, Marine
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5759

A stable room-temperature sodium–sulfur battery
journal, June 2016

  • Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11722

Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries
journal, January 2014

  • Zhou, Junwen; Li, Rui; Fan, Xinxin
  • Energy & Environmental Science, Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01382D

Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design
journal, April 2016

  • Tao, Xinyong; Wang, Jianguo; Liu, Chong
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11203

Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries
journal, April 2014

  • Zheng, Jianming; Tian, Jian; Wu, Dangxin
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl404721h

Achieving High-Performance Room-Temperature Sodium–Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres
journal, December 2016

  • Wang, Yun-Xiao; Yang, Jianping; Lai, Weihong
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b08685

The rechargeable revolution: A better battery
journal, March 2014


Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge
journal, July 2015

  • Zhou, Guangmin; Paek, Eunsu; Hwang, Gyeong S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8760

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

XPS study of copper sulphides inserted into a Langmuir-Blodgett matrix
journal, June 1993


Lithium batteries: Status, prospects and future
journal, May 2010


Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur Batteries
journal, October 2016

  • Jia, Lei; Wu, Tianpin; Lu, Jun
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 44
  • DOI: 10.1021/acsami.6b10366

Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries
journal, January 2014

  • Huang, Jia-Qi; Zhang, Qiang; Peng, Hong-Jie
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42223B

A layer-by-layer supramolecular structure for a sulfur cathode
journal, January 2016

  • Bucur, Claudiu B.; Muldoon, John; Lita, Adrian
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02367J

Catalytic oxidation of Li 2 S on the surface of metal sulfides for Li−S batteries
journal, January 2017

  • Zhou, Guangmin; Tian, Hongzhen; Jin, Yang
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1615837114

Diagnostic spectra for XPS analysis of CuOSH compounds
journal, December 1992

  • Chawla, S. K.; Sankarraman, N.; Payer, J. H.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 61, Issue 1
  • DOI: 10.1016/0368-2048(92)80047-C

Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries
journal, February 2016

  • Chen, Shuru; Dai, Fang; Gordin, Mikhail L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 13
  • DOI: 10.1002/anie.201511830

Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries
journal, March 2017

  • Sun, Zhenhua; Zhang, Jingqi; Yin, Lichang
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14627

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Ambient Temperature Sodium-Sulfur Batteries
journal, January 2015


A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00072a

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


Activation of Oxygen-Stabilized Sulfur for Li and Na Batteries
journal, December 2015

  • Luo, Chao; Zhu, Yujie; Borodin, Oleg
  • Advanced Functional Materials, Vol. 26, Issue 5
  • DOI: 10.1002/adfm.201503918

Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries
journal, June 2013

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Angewandte Chemie, Vol. 125, Issue 29, p. 7608-7611
  • DOI: 10.1002/ange.201300680

From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries
text, January 2015


Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries
journal, February 2015

  • Liang, Xiao; Garsuch, Arnd; Nazar, Linda F.
  • Angewandte Chemie, Vol. 127, Issue 13
  • DOI: 10.1002/ange.201410174

Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries
journal, February 2016

  • Chen, Shuru; Dai, Fang; Gordin, Mikhail L.
  • Angewandte Chemie, Vol. 128, Issue 13
  • DOI: 10.1002/ange.201511830

Works referencing / citing this record:

Hierarchical Micro‐Nano Sheet Arrays of Nickel–Cobalt Double Hydroxides for High‐Rate Ni–Zn Batteries
journal, February 2019


Frogspawn‐Coral‐Like Hollow Sodium Sulfide Nanostructured Cathode for High‐Rate Performance Sodium–Sulfur Batteries
journal, December 2018


A Multifunctional Separator Enables Safe and Durable Lithium/Magnesium–Sulfur Batteries under Elevated Temperature
journal, December 2019

  • Zhou, Zhenfang; Chen, Bingbing; Fang, Tingting
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201902023

Rechargeable Iron–Sulfur Battery without Polysulfide Shuttling
journal, September 2019

  • Wu, Xianyong; Markir, Aaron; Xu, Yunkai
  • Advanced Energy Materials, Vol. 9, Issue 40
  • DOI: 10.1002/aenm.201902422

Electrochemically Stable Sodium Metal‐Tellurium/Carbon Nanorods Batteries
journal, November 2019

  • Wang, Hui; Tong, Zhongqiu; Yang, Rui
  • Advanced Energy Materials, Vol. 9, Issue 48
  • DOI: 10.1002/aenm.201903046

Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions
journal, January 2019

  • Zhang, Bin-Wei; Sheng, Tian; Wang, Yun-Xiao
  • Angewandte Chemie International Edition, Vol. 58, Issue 5
  • DOI: 10.1002/anie.201811080

CuS and Cu 2 S as Cathode Materials for Lithium Batteries: A Review
journal, March 2019


Two‐Dimensional MoS 2 for Li−S Batteries: Structural Design and Electronic Modulation
journal, March 2020


Fabrication of Superior Single‐Atom Catalysts toward Diverse Electrochemical Reactions
journal, February 2019

  • Zhang, Bin‐Wei; Wang, Yun‐Xiao; Chou, Shu‐Lei
  • Small Methods, Vol. 3, Issue 9
  • DOI: 10.1002/smtd.201800497

A binder-free electrode architecture design for lithium–sulfur batteries: a review
journal, January 2019


Simple and scalable synthesis of CuS as an ultrafast and long-cycling anode for sodium ion batteries
journal, January 2019

  • Kim, Huihun; Sadan, Milan K.; Kim, Changhyeon
  • Journal of Materials Chemistry A, Vol. 7, Issue 27
  • DOI: 10.1039/c9ta04640b

Beyond Lithium-Based Batteries
journal, January 2020

  • Biemolt, Jasper; Jungbacker, Peter; van Teijlingen, Tess
  • Materials, Vol. 13, Issue 2
  • DOI: 10.3390/ma13020425

Long‐Life Room‐Temperature Sodium–Sulfur Batteries by Virtue of Transition‐Metal‐Nanocluster–Sulfur Interactions
journal, January 2019

  • Zhang, Bin‐Wei; Sheng, Tian; Wang, Yun‐Xiao
  • Angewandte Chemie, Vol. 131, Issue 5
  • DOI: 10.1002/ange.201811080

Beyond Lithium-Based Batteries
journal, January 2020

  • Biemolt, Jasper; Jungbacker, Peter; van Teijlingen, Tess
  • Materials, Vol. 13, Issue 2
  • DOI: 10.3390/ma13020425

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.