DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries

Abstract

High energy density, nickel (Ni)-rich, layered LiNixMnyCozO2 (NMC, x ≥ 0.6) materials are promising cathodes for lithium-ion batteries. However, several technical challenges, such as fast capacity fading and high voltage instability, hinder their large-scale application. Herein, we identified an optimum calcining temperature range for the Ni-rich cathode LiNi0.76Mn0.14Co0.10O2 (NMC76). NMC76 calcined at 750–775 °C exhibits a high discharge capacity (~215 mAh g–1 when charged to 4.5 V) and retains ca. 79% of its initial capacity after 200 cycles. It also exhibits an excellent high-rate capability, delivering a capacity of more than 160 mAh g–1 even at a 10 C rate. The high performance of NMC76 is directly related to the optimized size of its primary particles (100–300 nm) (which onstitute the spherical secondary particles of >10 µm) and cation mixing. Higher calcination temperature (≥800 °C) leads to rapid increase of primary particle size, poor cycling stability, and inferior rate capability of NMC76 due to severe micro-strain and -crack formation upon repeated lithium-ion de/intercalations. Furthermore, NMC76 calcined at 750–775 °C is a very good candidate for the next generation of Li ion batteries.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1437027
Report Number(s):
PNNL-SA-132502
Journal ID: ISSN 2211-2855; PII: S2211285518303148
Grant/Contract Number:  
AC02–05CH11231; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 49; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Nickel-rich cathodes; Calcination temperature; Cycling stability; Micro-strain; Crack formation; Lithium-ion batteries

Citation Formats

Zheng, Jianming, Yan, Pengfei, Estevez, Luis, Wang, Chongmin, and Zhang, Ji -Guang. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. United States: N. p., 2018. Web. doi:10.1016/j.nanoen.2018.04.077.
Zheng, Jianming, Yan, Pengfei, Estevez, Luis, Wang, Chongmin, & Zhang, Ji -Guang. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. United States. https://doi.org/10.1016/j.nanoen.2018.04.077
Zheng, Jianming, Yan, Pengfei, Estevez, Luis, Wang, Chongmin, and Zhang, Ji -Guang. Tue . "Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries". United States. https://doi.org/10.1016/j.nanoen.2018.04.077. https://www.osti.gov/servlets/purl/1437027.
@article{osti_1437027,
title = {Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries},
author = {Zheng, Jianming and Yan, Pengfei and Estevez, Luis and Wang, Chongmin and Zhang, Ji -Guang},
abstractNote = {High energy density, nickel (Ni)-rich, layered LiNixMnyCozO2 (NMC, x ≥ 0.6) materials are promising cathodes for lithium-ion batteries. However, several technical challenges, such as fast capacity fading and high voltage instability, hinder their large-scale application. Herein, we identified an optimum calcining temperature range for the Ni-rich cathode LiNi0.76Mn0.14Co0.10O2 (NMC76). NMC76 calcined at 750–775 °C exhibits a high discharge capacity (~215 mAh g–1 when charged to 4.5 V) and retains ca. 79% of its initial capacity after 200 cycles. It also exhibits an excellent high-rate capability, delivering a capacity of more than 160 mAh g–1 even at a 10 C rate. The high performance of NMC76 is directly related to the optimized size of its primary particles (100–300 nm) (which onstitute the spherical secondary particles of >10 µm) and cation mixing. Higher calcination temperature (≥800 °C) leads to rapid increase of primary particle size, poor cycling stability, and inferior rate capability of NMC76 due to severe micro-strain and -crack formation upon repeated lithium-ion de/intercalations. Furthermore, NMC76 calcined at 750–775 °C is a very good candidate for the next generation of Li ion batteries.},
doi = {10.1016/j.nanoen.2018.04.077},
journal = {Nano Energy},
number = C,
volume = 49,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 161 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries
journal, September 2009

  • Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei
  • Nano Letters, Vol. 9, Issue 9, p. 3370-3374
  • DOI: 10.1021/nl901670t

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder
journal, January 2012

  • Zheng, Jianming; Xiao, Jie; Yu, Xiqian
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 39
  • DOI: 10.1039/c2cp43007j

Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Kinetics Tuning of Li-Ion Diffusion in Layered Li(Ni x Mn y Co z )O 2
journal, June 2015

  • Wei, Yi; Zheng, Jiaxin; Cui, Suihan
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04040

Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries
journal, September 2014


A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer
journal, February 2013

  • Cho, Yonghyun; Oh, Pilgun; Cho, Jaephil
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304558t

Improvement of the Cycling Performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 Cathode Active Materials by a Dual-Conductive Polymer Coating
journal, February 2014

  • Ju, Seo Hee; Kang, Ik-Su; Lee, Yoon-Sung
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 4
  • DOI: 10.1021/am404965p

Role of V2O5 coating on LiNiO2-based materials for lithium ion battery
journal, January 2014


Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi 0.8– x Co 0.1 Mn 0.1+ x O 2 (0.0 ≤ x ≤ 0.08) Cathodes for Lithium-Ion Batteries
journal, March 2015

  • Zheng, Jianming; Kan, Wang Hay; Manthiram, Arumugam
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/acsami.5b00788

Improved Performances of Li[Ni 0.65 Co 0.08 Mn 0.27 ]O 2 Cathode Material with Full Concentration Gradient for Li-Ion Batteries
journal, December 2014

  • Yoon, Sung-Jun; Park, Kang-Joon; Lim, Byung-Beom
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0101502jes

Improving the Cycling Performance of the Layered Ni-Rich Oxide Cathode by Introducing Low-Content Li 2 MnO 3
journal, January 2016


Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li 2 MnO 3
journal, January 2016


Effect of Lithium in Transition Metal Layers of Ni-Rich Cathode Materials on Electrochemical Properties
journal, January 2015

  • Choi, Moon-Ho; Yoon, Chong Seung; Myung, Seung-Taek
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0531512jes

Particle size effect of Ni-rich cathode materials on lithium ion battery performance
journal, January 2012


Nickel-Rich Layered Microspheres Cathodes: Lithium/Nickel Disordering and Electrochemical Performance
journal, September 2014

  • Fu, Chaochao; Li, Guangshe; Luo, Dong
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 18
  • DOI: 10.1021/am5030726

Effect of Ni 2+ Content on Lithium/Nickel Disorder for Ni-Rich Cathode Materials
journal, April 2015

  • Wu, Feng; Tian, Jun; Su, Yuefeng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 14
  • DOI: 10.1021/acsami.5b00645

Effect of sintering temperature on cycling performance and rate performance of LiNi0.8Co0.1Mn0.1O2
journal, December 2014

  • Li, Xiang-qun; Xiong, Xun-hui; Wang, Zhi-xing
  • Transactions of Nonferrous Metals Society of China, Vol. 24, Issue 12
  • DOI: 10.1016/S1003-6326(14)63564-0

Effects of Li source and calcination temperature on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 lithium-ion cathode materials
journal, March 2013


The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials
journal, October 2016


Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: x Li 2 MnO 3 ·(1 − x )LiMn 0.333 Ni 0.333 Co 0.333 O 2 (0 ≤ x ≤ 0.7)
journal, October 2008

  • Johnson, Christopher S.; Li, Naichao; Lefief, Christina
  • Chemistry of Materials, Vol. 20, Issue 19
  • DOI: 10.1021/cm801245r

The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


High rate charge–discharge properties of LiNi1/3Co1/3Mn1/3O2 synthesized via a low temperature solid-state method
journal, October 2010


Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries
journal, June 2003


The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound
journal, January 2004

  • Ngala, J. Katana; Chernova, Natasha A.; Ma, Miaomiao
  • Journal of Materials Chemistry, Vol. 14, Issue 2
  • DOI: 10.1039/b309834f

Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material
journal, February 2015

  • Zheng, Jianming; Xu, Pinghong; Gu, Meng
  • Chemistry of Materials, Vol. 27, Issue 4
  • DOI: 10.1021/cm5045978

Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization
journal, December 2016

  • Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
  • Advanced Energy Materials, Vol. 7, Issue 6
  • DOI: 10.1002/aenm.201601284

Microstructural Changes in LiNi0.8Co0.15Al0.05O2 Positive Electrode Material during the First Cycle
journal, January 2011

  • Zheng, Shijian; Huang, Rong; Makimura, Yoshinari
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3544843

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

Development of Microstrain in Aged Lithium Transition Metal Oxides
journal, June 2014

  • Lee, Eung-Ju; Chen, Zonghai; Noh, Hyung-Ju
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5022859

Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


Averting cracks caused by insertion reaction in lithium–ion batteries
journal, June 2010

  • Hu, Yuhang; Zhao, Xuanhe; Suo, Zhigang
  • Journal of Materials Research, Vol. 25, Issue 6
  • DOI: 10.1557/JMR.2010.0142

Electronic and Electrochemical Properties of Li x Ni 1- y Co y O 2 Cathodes Studied by Impedance Spectroscopy
journal, May 2001

  • Nobili, F.; Croce, F.; Scrosati, B.
  • Chemistry of Materials, Vol. 13, Issue 5
  • DOI: 10.1021/cm000600x

Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation
journal, August 2013


Works referencing / citing this record:

Tuning Oxygen Redox Chemistry in Li‐Rich Mn‐Based Layered Oxide Cathodes by Modulating Cation Arrangement
journal, September 2019

  • Zhang, Jicheng; Cheng, Fangyi; Chou, Shulei
  • Advanced Materials, Vol. 31, Issue 42
  • DOI: 10.1002/adma.201901808

Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability
journal, August 2019


Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies
journal, December 2019

  • Liang, Longwei; Zhang, Wenheng; Zhao, Fei
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901749

Synthesis of mesoporous orthorhombic LiMnO 2 cathode materials via a one-step flux method for high performance lithium-ion batteries
journal, June 2018


Ni-Rich Oxide LiNi 0.85 Co 0.05 Mn 0.1 O 2 for Lithium Ion Battery: Effect of Microwave Radiation on Its Morphology and Electrochemical Property
journal, January 2019

  • Liu, Yong; Yao, Wenli; Lei, Chao
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0151908jes

LiNi 0.90 Co 0.07 Mg 0.03 O 2 cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries
journal, January 2019

  • Zhang, Yudong; Li, Hang; Liu, Junxiang
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta02803j

Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability
journal, August 2019


Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries
journal, June 2019