Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites
Abstract
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making their studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). In conclusion, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.
- Authors:
-
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Biological Sciences Division
- Publication Date:
- Research Org.:
- Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Biological and Environmental Research (BER)
- OSTI Identifier:
- 1437019
- Alternate Identifier(s):
- OSTI ID: 1703100
- Report Number(s):
- PNNL-SA-130591
Journal ID: ISSN 0003-2670; PII: S0003267018302824
- Grant/Contract Number:
- AC05-76RL01830; AC05-76RL0 1830
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Analytica Chimica Acta
- Additional Journal Information:
- Journal Volume: 1037; Journal ID: ISSN 0003-2670
- Publisher:
- Elsevier
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; Ion mobility spectrometry; Collision cross section; Xenobiotics; Polycyclic aromatic hydrocarbons; Polychlorinated biphenyls; Polybrominated diphenyl ethers; Electrospray ionization; Atmospheric pressure chemical ionization; Atmospheric pressure photoionization
Citation Formats
Zheng, Xueyun, Dupuis, Kevin T., Aly, Noor A., Zhou, Yuxuan, Smith, Francesca B., Tang, Keqi, Smith, Richard D., and Baker, Erin S. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. United States: N. p., 2018.
Web. doi:10.1016/j.aca.2018.02.054.
Zheng, Xueyun, Dupuis, Kevin T., Aly, Noor A., Zhou, Yuxuan, Smith, Francesca B., Tang, Keqi, Smith, Richard D., & Baker, Erin S. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. United States. doi:10.1016/j.aca.2018.02.054.
Zheng, Xueyun, Dupuis, Kevin T., Aly, Noor A., Zhou, Yuxuan, Smith, Francesca B., Tang, Keqi, Smith, Richard D., and Baker, Erin S. Fri .
"Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites". United States. doi:10.1016/j.aca.2018.02.054. https://www.osti.gov/servlets/purl/1437019.
@article{osti_1437019,
title = {Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites},
author = {Zheng, Xueyun and Dupuis, Kevin T. and Aly, Noor A. and Zhou, Yuxuan and Smith, Francesca B. and Tang, Keqi and Smith, Richard D. and Baker, Erin S.},
abstractNote = {Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making their studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). In conclusion, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.},
doi = {10.1016/j.aca.2018.02.054},
journal = {Analytica Chimica Acta},
number = ,
volume = 1037,
place = {United States},
year = {2018},
month = {3}
}
Web of Science
Figures / Tables:

Works referencing / citing this record:
Use of carbon quantum dots and fluorescein isothiocyanate in developing an improved competitive fluoroimmunoassay for detecting polybrominated diphenyl ether
journal, February 2019
- Li, Weili; Yao, Lu; Geng, Hongchao
- Journal of the Iranian Chemical Society, Vol. 16, Issue 8
Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics
journal, May 2018
- Blaženović, Ivana; Kind, Tobias; Ji, Jian
- Metabolites, Vol. 8, Issue 2
Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends
journal, July 2019
- Hernández-Mesa, Maykel; Ropartz, David; García-Campaña, Ana M.
- Molecules, Vol. 24, Issue 15
Figures / Tables found in this record: