skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature

Abstract

We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usual $${\rm si}{{{\rm n}}^{2}}\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.

Authors:
 [1];  [2];  [3];  [4]; ORCiD logo [5];  [6]; ORCiD logo [2]
  1. Univ. of Science and Technology Beijing, Beijing (People's Republic of China); Graduate School of Excellence Materials Science in Mainz (MAINZ), Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany)
  2. Graduate School of Excellence Materials Science in Mainz (MAINZ), Mainz (Germany); Johannes Gutenberg-Univ. Mainz, Mainz (Germany)
  3. Walther-MeiBner-Institut, Garching (Germany); Technische Univ. Munchen, Garching (Germany)
  4. Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Southern Univ. of Science and Technology, Guangdong (People's Republic of China)
  5. Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Walther-MeiBner-Institut, Garching (Germany); Technische Univ. Munchen, Garching (Germany); Technische Univ. Dresden, Dresden (Germany)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1436923
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. Condensed Matter
Additional Journal Information:
Journal Volume: 30; Journal Issue: 3; Journal ID: ISSN 0953-8984
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; spin Hall magnetoresistance; non-collinear ferrimagnet; spin current

Citation Formats

Dong, Bo -Wen, Cramer, Joel, Ganzhorn, Kathrin, Yuan, H. Y., Guo, Er-Jia, Goennenwein, Sebastian T. B., and Klaui, Mathias. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature. United States: N. p., 2017. Web. https://doi.org/10.1088/1361-648X/aa9e26.
Dong, Bo -Wen, Cramer, Joel, Ganzhorn, Kathrin, Yuan, H. Y., Guo, Er-Jia, Goennenwein, Sebastian T. B., & Klaui, Mathias. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature. United States. https://doi.org/10.1088/1361-648X/aa9e26
Dong, Bo -Wen, Cramer, Joel, Ganzhorn, Kathrin, Yuan, H. Y., Guo, Er-Jia, Goennenwein, Sebastian T. B., and Klaui, Mathias. Thu . "Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature". United States. https://doi.org/10.1088/1361-648X/aa9e26. https://www.osti.gov/servlets/purl/1436923.
@article{osti_1436923,
title = {Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature},
author = {Dong, Bo -Wen and Cramer, Joel and Ganzhorn, Kathrin and Yuan, H. Y. and Guo, Er-Jia and Goennenwein, Sebastian T. B. and Klaui, Mathias},
abstractNote = {We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usual ${\rm si}{{{\rm n}}^{2}}\theta $ relation well established in the collinear magnet yttrium iron garnet, with $\theta $ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.},
doi = {10.1088/1361-648X/aa9e26},
journal = {Journal of Physics. Condensed Matter},
number = 3,
volume = 30,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Sketch of the sample GGG/GdIG/Pt and measurement schematics. (b) Magnetization of the sample as a function of temperature at |µ0H| = 0.1 T. The compensation temperature is around 180 K. Reprinted with permission from [16]. Copyright 2017, American Chemical Society. (c) ADMR signal measured at 295 Kmore » when rotating a magnetic field |µ0H| = 0.8 T in $xy$ (red), $yz$ (blue) and $xz$ (pink) planes, respectively.« less

Save / Share:

Works referenced in this record:

Spintronics: Fundamentals and applications
journal, April 2004


Enhanced Gilbert Damping in Thin Ferromagnetic Films
journal, February 2002


Spin pumping and magnetization dynamics in metallic multilayers
journal, December 2002


Scaling Behavior of the Spin Pumping Effect in Ferromagnet-Platinum Bilayers
journal, July 2011


Nonlocal magnetization dynamics in ferromagnetic heterostructures
journal, December 2005

  • Tserkovnyak, Yaroslav; Brataas, Arne; Bauer, Gerrit E. W.
  • Reviews of Modern Physics, Vol. 77, Issue 4
  • DOI: 10.1103/RevModPhys.77.1375

Spin Seebeck insulator
journal, September 2010

  • Uchida, K.; Xiao, J.; Adachi, H.
  • Nature Materials, Vol. 9, Issue 11
  • DOI: 10.1038/nmat2856

Observation of the spin-Seebeck effect in a ferromagnetic semiconductor
journal, September 2010

  • Jaworski, C. M.; Yang, J.; Mack, S.
  • Nature Materials, Vol. 9, Issue 11
  • DOI: 10.1038/nmat2860

Local Charge and Spin Currents in Magnetothermal Landscapes
journal, March 2012


Spin caloritronics
journal, April 2012

  • Bauer, Gerrit E. W.; Saitoh, Eiji; van Wees, Bart J.
  • Nature Materials, Vol. 11, Issue 5
  • DOI: 10.1038/nmat3301

Intrinsic Spin Seebeck Effect in Au / YIG
journal, February 2013


Time resolved spin Seebeck effect experiments
journal, May 2014

  • Roschewsky, Niklas; Schreier, Michael; Kamra, Akashdeep
  • Applied Physics Letters, Vol. 104, Issue 20
  • DOI: 10.1063/1.4879462

Length Scale of the Spin Seebeck Effect
journal, August 2015


Origin of the spin Seebeck effect in compensated ferrimagnets
journal, February 2016

  • Geprägs, Stephan; Kehlberger, Andreas; Coletta, Francesco Della
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10452

Thermal spin current and spin accumulation at ferromagnetic insulator/nonmagnetic metal interface
journal, July 2016


Magnon Mode Selective Spin Transport in Compensated Ferrimagnets
journal, May 2017


Spin Hall Effect
journal, August 1999


Spin Hall Effect in the Presence of Spin Diffusion
journal, July 2000


Spin Hall effects
journal, October 2015

  • Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.
  • Reviews of Modern Physics, Vol. 87, Issue 4
  • DOI: 10.1103/RevModPhys.87.1213

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
journal, May 2006

  • Saitoh, E.; Ueda, M.; Miyajima, H.
  • Applied Physics Letters, Vol. 88, Issue 18
  • DOI: 10.1063/1.2199473

Inverse Spin-Hall Effect Induced by Spin Pumping in Various Metals*
journal, September 2010

  • Ando, Kazuya; Kajiwara, Yosuke; Sasage, Kohei
  • IEEE Transactions on Magnetics, Vol. 46, Issue 9
  • DOI: 10.1109/TMAG.2010.2060382

Spin transfer torque on magnetic insulators
journal, September 2011


Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect
journal, May 2013


Theory of spin Hall magnetoresistance
journal, April 2013


Temperature dependent spin transport properties of platinum inferred from spin Hall magnetoresistance measurements
journal, June 2014

  • Meyer, Sibylle; Althammer, Matthias; Geprägs, Stephan
  • Applied Physics Letters, Vol. 104, Issue 24
  • DOI: 10.1063/1.4885086

Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids
journal, June 2013


Spin Hall magnetoresistance in Pt / Fe 3 O 4 thin films at room temperature
journal, October 2014


Temperature dependence of spin Hall magnetoresistance in thin YIG/Pt films
journal, June 2014


Platinum/yttrium iron garnet inverted structures for spin current transport
journal, June 2016

  • Aldosary, Mohammed; Li, Junxue; Tang, Chi
  • Applied Physics Letters, Vol. 108, Issue 24
  • DOI: 10.1063/1.4953454

Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr 2 O 4 films
journal, December 2015


Spin Hall magnetoresistance in a canted ferrimagnet
journal, September 2016


Electrical detection of spiral spin structures in Pt | Cu 2 OSeO 3 heterostructures
journal, October 2016


High-temperature electrical properties of yttrium iron garnet under varying oxygen pressures
journal, July 1974


Spontaneous Magnetization of Some Garnet Ferrites and the Aluminum Substituted Garnet Ferrites
journal, March 1958


Some Magnetic and Structural Properties of Epitaxial Garnet Films Prepared by rf Sputtering
journal, March 1969

  • Sawatzky, E.; Kay, E.
  • Journal of Applied Physics, Vol. 40, Issue 3
  • DOI: 10.1063/1.1657720

Experimental Investigation of the Nature of the Magnetoresistance Effects in Pd-YIG Hybrid Structures
journal, July 2014


Element-selective magnetometry in ferrimagnetic erbium iron garnet
journal, December 2012


Tunable Sign Change of Spin Hall Magnetoresistance in Pt / NiO / YIG Structures
journal, April 2017


    Works referencing / citing this record:

    Antiferromagnetic NiO thickness dependent sign of the spin Hall magnetoresistance in γ-Fe 2 O 3 /NiO/Pt epitaxial stacks
    journal, March 2019

    • Dong, Bo-Wen; Baldrati, Lorenzo; Schneider, Christoph
    • Applied Physics Letters, Vol. 114, Issue 10
    • DOI: 10.1063/1.5080766

    Spin Hall magnetoresistance in heterostructures consisting of noncrystalline paramagnetic YIG and Pt
    journal, June 2019

    • Lammel, Michaela; Schlitz, Richard; Geishendorf, Kevin
    • Applied Physics Letters, Vol. 114, Issue 25
    • DOI: 10.1063/1.5090098

    Role of interface quality for the spin Hall magnetoresistance in nickel ferrite thin films with bulk-like magnetic properties
    journal, August 2019

    • Althammer, Matthias; Singh, Amit Vikram; Wimmer, Tobias
    • Applied Physics Letters, Vol. 115, Issue 9
    • DOI: 10.1063/1.5097600

    Simultaneous detection of the spin Hall magnetoresistance and Joule heating-induced spin Seebeck effect in Gd 3 Fe 5 O 12 /Pt bilayers
    journal, November 2019

    • Fayaz, Muhammad Umer; Saleem, Muhammad Shahrukh; Gu, Youdi
    • Journal of Applied Physics, Vol. 126, Issue 18
    • DOI: 10.1063/1.5117172

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.