skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on November 14, 2018

Title: Heptavalent Actinide Tetroxides NpO 4 and PuO 4 : Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO 4

The highest known actinide oxidation states are Np(VII) and Pu(VII), both of which have been identified in solution and solid compounds. Recently a molecular Np(VII) complex, NpO 3(NO 3) 2-, was prepared and characterized in the gas phase. In accord with the lower stability of heptavalent Pu, no Pu(VII) molecular species has been identified. Reported here are the gas-phase syntheses and characterizations of NpO 4 - and PuO 4 -. Reactivity studies and density functional theory computations indicate the heptavalent metal oxidation state in both. This is the first instance of Pu(VII) in the absence of stabilizing effects due to condensed phase solvation or crystal fields. Here, the results indicate that addition of an electron to neutral PuO 4, which has a computed electron affinity of 2.56 eV, counterintuitively results in oxidation of Pu(V) to Pu(VII), concomitant with superoxide reduction.
Authors:
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 121; Journal Issue: 47; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1436653