skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System

Abstract

Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. Here, this review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Zhejiang Univ., Hangzhou (China). College of Chemical and Biological Engineering, Key Lab. of Biomass Chemical Engineering of Ministry of Education
  2. Univ. of Illinois, Urbana-Champaign, IL (United States). Carl R. Woese Inst. for Genomic Biology, Dept. of Chemical and Biomolecular Engineering
  3. Univ. of Illinois, Urbana-Champaign, IL (United States). Carl R. Woese Inst. for Genomic Biology, Dept. of Chemical and Biomolecular Engineering; Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Chemistry, Biochemistry, and Bioengineering
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); Zhejiang Univ., Hangzhou (China)
OSTI Identifier:
1436426
Alternate Identifier(s):
OSTI ID: 1433560; OSTI ID: 1435935
Grant/Contract Number:  
SC0018420; SC0018260
Resource Type:
Accepted Manuscript
Journal Name:
Biotechnology Journal
Additional Journal Information:
Journal Volume: 13; Journal Issue: 9; Journal ID: ISSN 1860-6768
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Gene regulation; Genome engineering; Metabolic engineering; Saccharomyces cerevisiae; Synthetic biology; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; gene regulation; genome engineering; metabolic engineering; saccaromyces cerevisiae; synthetic biology

Citation Formats

Lian, Jiazhang, HamediRad, Mohammad, and Zhao, Huimin. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. United States: N. p., 2018. Web. doi:10.1002/biot.201700601.
Lian, Jiazhang, HamediRad, Mohammad, & Zhao, Huimin. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. United States. doi:10.1002/biot.201700601.
Lian, Jiazhang, HamediRad, Mohammad, and Zhao, Huimin. Tue . "Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System". United States. doi:10.1002/biot.201700601. https://www.osti.gov/servlets/purl/1436426.
@article{osti_1436426,
title = {Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System},
author = {Lian, Jiazhang and HamediRad, Mohammad and Zhao, Huimin},
abstractNote = {Thanks to its ease of use, modularity, and scalability, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been increasingly used in the design and engineering of Saccharomyces cerevisiae, one of the most popular hosts for industrial biotechnology. Here, this review summarizes the recent development of this disruptive technology for metabolic engineering applications, including CRISPR-mediated gene knock-out and knock-in as well as transcriptional activation and interference. More importantly, multi-functional CRISPR systems that combine both gain- and loss-of-function modulations for combinatorial metabolic engineering are highlighted.},
doi = {10.1002/biot.201700601},
journal = {Biotechnology Journal},
number = 9,
volume = 13,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: CRISPR for genome editing and transcriptional regulation. (A) CRISPR-mediated double-strand break and subsequent homology directed repair (HDR). (B) CRISPR-mediated transcriptional regulation by recruiting an effector domain (activator or repressor domain) to the nuclease-deficient CRISPR complex, via dCas9 fusion (upper panel) or scRNA design (specific aptamer-RNA binding protein interaction,more » bottom panel). Based on the design of the HDR donors, various types of genome editing can be achieved, such as gene disruption (C), gene deletion (D), gene integration (E), gene deletion and integration (F), and gene deletion and integration as well as DNA assembly (G). Arrows represent the protein coding sequences.« less

Save / Share:

Works referenced in this record:

Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
journal, March 2015


Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression
journal, February 2013


SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae
journal, February 2017

  • Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro
  • Microbial Cell Factories, Vol. 16, Issue 1
  • DOI: 10.1186/s12934-017-0632-x

Self‐processing of ribozyme‐flanked RNAs into guide RNAs in vitro and in vivo for CRISPR‐mediated genome editing
journal, February 2014

  • Gao, Yangbin; Zhao, Yunde
  • Journal of Integrative Plant Biology, Vol. 56, Issue 4
  • DOI: 10.1111/jipb.12152

CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
journal, May 2016

  • Labun, Kornel; Montague, Tessa G.; Gagnon, James A.
  • Nucleic Acids Research, Vol. 44, Issue W1
  • DOI: 10.1093/nar/gkw398

CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes
journal, July 2013


CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing
journal, May 2014

  • Montague, Tessa G.; Cruz, José M.; Gagnon, James A.
  • Nucleic Acids Research, Vol. 42, Issue W1
  • DOI: 10.1093/nar/gku410

Automated multiplex genome-scale engineering in yeast
journal, May 2017

  • Si, Tong; Chao, Ran; Min, Yuhao
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15187

Altered sterol composition renders yeast thermotolerant
journal, October 2014


Engineering microbial factories for synthesis of value-added products
journal, April 2011

  • Du, Jing; Shao, Zengyi; Zhao, Huimin
  • Journal of Industrial Microbiology & Biotechnology, Vol. 38, Issue 8
  • DOI: 10.1007/s10295-011-0970-3

CRISPR RNA–guided activation of endogenous human genes
journal, July 2013

  • Maeder, Morgan L.; Linder, Samantha J.; Cascio, Vincent M.
  • Nature Methods, Vol. 10, Issue 10
  • DOI: 10.1038/nmeth.2598

Homology-Integrated CRISPR–Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae
journal, September 2014

  • Bao, Zehua; Xiao, Han; Liang, Jing
  • ACS Synthetic Biology, Vol. 4, Issue 5
  • DOI: 10.1021/sb500255k

Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design
journal, March 2016


Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
journal, July 2014


A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
journal, November 2016

  • Reider Apel, Amanda; d'Espaux, Leo; Wehrs, Maren
  • Nucleic Acids Research, Vol. 45, Issue 1
  • DOI: 10.1093/nar/gkw1023

Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
journal, August 2013

  • Hou, Z.; Zhang, Y.; Propson, N. E.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 39
  • DOI: 10.1073/pnas.1313587110

CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites
journal, December 2014


Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas
journal, July 2015


Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation
journal, September 2014

  • Doench, John G.; Hartenian, Ella; Graham, Daniel B.
  • Nature Biotechnology, Vol. 32, Issue 12
  • DOI: 10.1038/nbt.3026

Sequence determinants of improved CRISPR sgRNA design
journal, June 2015


Development and Applications of CRISPR-Cas9 for Genome Engineering
journal, June 2014


Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
journal, February 2017

  • Zong, Yuan; Wang, Yanpeng; Li, Chao
  • Nature Biotechnology, Vol. 35, Issue 5
  • DOI: 10.1038/nbt.3811

Engineered CRISPR-Cas9 nucleases with altered PAM specificities
journal, June 2015

  • Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.
  • Nature, Vol. 523, Issue 7561
  • DOI: 10.1038/nature14592

The New State of the Art: Cas9 for Gene Activation and Repression
journal, September 2015

  • La Russa, Marie F.; Qi, Lei S.
  • Molecular and Cellular Biology, Vol. 35, Issue 22
  • DOI: 10.1128/MCB.00512-15

Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
journal, September 2013

  • Esvelt, Kevin M.; Mali, Prashant; Braff, Jonathan L.
  • Nature Methods, Vol. 10, Issue 11
  • DOI: 10.1038/nmeth.2681

DNA targeting specificity of RNA-guided Cas9 nucleases
journal, July 2013

  • Hsu, Patrick D.; Scott, David A.; Weinstein, Joshua A.
  • Nature Biotechnology, Vol. 31, Issue 9, p. 827-832
  • DOI: 10.1038/nbt.2647

Digital logic circuits in yeast with CRISPR-dCas9 NOR gates
journal, May 2017

  • Gander, Miles W.; Vrana, Justin D.; Voje, William E.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15459

EasyClone-MarkerFree: A vector toolkit for marker-less integration of genes into Saccharomyces cerevisiae via CRISPR-Cas9
journal, June 2016

  • Jessop-Fabre, Mathew M.; Jakočiūnas, Tadas; Stovicek, Vratislav
  • Biotechnology Journal, Vol. 11, Issue 8
  • DOI: 10.1002/biot.201600147

Selection of chromosomal DNA libraries using a multiplex CRISPR system
journal, August 2014

  • Ryan, Owen W.; Skerker, Jeffrey M.; Maurer, Matthew J.
  • eLife, Vol. 3
  • DOI: 10.7554/eLife.03703

Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae
journal, March 2017


CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae
journal, March 2015


Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System
journal, October 2015

  • Zetsche, Bernd; Gootenberg, Jonathan S.; Abudayyeh, Omar O.
  • Cell, Vol. 163, Issue 3, p. 759-771
  • DOI: 10.1016/j.cell.2015.09.038

Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system
journal, November 2017


Engineering biological systems using automated biofoundries
journal, July 2017


Construction of a Quadruple Auxotrophic Mutant of an Industrial Polyploid Saccharomyces cerevisiae Strain by Using RNA-Guided Cas9 Nuclease
journal, October 2014

  • Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin
  • Applied and Environmental Microbiology, Vol. 80, Issue 24
  • DOI: 10.1128/AEM.02310-14

CRISPR/Cas system for yeast genome engineering: advances and applications
journal, May 2017

  • Stovicek, Vratislav; Holkenbrink, Carina; Borodina, Irina
  • FEMS Yeast Research, Vol. 17, Issue 5
  • DOI: 10.1093/femsyr/fox030

CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
journal, March 2015

  • Mans, Robert; van Rossum, Harmen M.; Wijsman, Melanie
  • FEMS Yeast Research, Vol. 15, Issue 2
  • DOI: 10.1093/femsyr/fov004

Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
journal, March 2013

  • DiCarlo, James E.; Norville, Julie E.; Mali, Prashant
  • Nucleic Acids Research, Vol. 41, Issue 7, p. 4336-4343
  • DOI: 10.1093/nar/gkt135

sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity
journal, February 2017


High-throughput functional genomics using CRISPR–Cas9
journal, April 2015

  • Shalem, Ophir; Sanjana, Neville E.; Zhang, Feng
  • Nature Reviews Genetics, Vol. 16, Issue 5
  • DOI: 10.1038/nrg3899

Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
journal, April 2016

  • Komor, Alexis C.; Kim, Yongjoo B.; Packer, Michael S.
  • Nature, Vol. 533, Issue 7603
  • DOI: 10.1038/nature17946

Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds
journal, January 2015


CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
journal, December 2015


CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae
journal, July 2015

  • Ronda, Carlotta; Maury, Jérôme; Jakočiu̅nas, Tadas
  • Microbial Cell Factories, Vol. 14, Issue 1
  • DOI: 10.1186/s12934-015-0288-3

Targeting Specificity of the CRISPR/Cas9 System
journal, September 2017


Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
journal, March 2012


Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies
journal, March 2017

  • Jensen, Emil D.; Ferreira, Raphael; Jakočiūnas, Tadas
  • Microbial Cell Factories, Vol. 16, Issue 1
  • DOI: 10.1186/s12934-017-0664-2

RNA-Guided Human Genome Engineering via Cas9
journal, January 2013


Teleseismic S wave microseisms
journal, August 2016


Multiplex Genome Engineering Using CRISPR/Cas Systems
journal, January 2013


Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites
journal, October 2014

  • Lian, Jiazhang; Zhao, Huimin
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 3
  • DOI: 10.1007/s10295-014-1518-0

Highly efficient Cas9-mediated transcriptional programming
journal, March 2015

  • Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani
  • Nature Methods, Vol. 12, Issue 4
  • DOI: 10.1038/nmeth.3312

Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
journal, January 2016

  • Doench, John G.; Fusi, Nicolo; Sullender, Meagan
  • Nature Biotechnology, Vol. 34, Issue 2
  • DOI: 10.1038/nbt.3437

CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae : CRISPR/Cpf1-mediated genome editing of
journal, November 2017

  • Verwaal, René; Buiting-Wiessenhaan, Nathalie; Dalhuijsen, Sacha
  • Yeast, Vol. 35, Issue 2
  • DOI: 10.1002/yea.3278

Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach
journal, July 2015

  • Chari, Raj; Mali, Prashant; Moosburner, Mark
  • Nature Methods, Vol. 12, Issue 9
  • DOI: 10.1038/nmeth.3473

Cell–Cell Communication in Yeast Using Auxin Biosynthesis and Auxin Responsive CRISPR Transcription Factors
journal, July 2015

  • Khakhar, Arjun; Bolten, Nicholas J.; Nemhauser, Jennifer
  • ACS Synthetic Biology, Vol. 5, Issue 4
  • DOI: 10.1021/acssynbio.5b00064

Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage
journal, October 2017

  • Gaudelli, Nicole M.; Komor, Alexis C.; Rees, Holly A.
  • Nature, Vol. 551, Issue 7681
  • DOI: 10.1038/nature24644

Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae
journal, June 2017


Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering
journal, December 2016

  • Garst, Andrew D.; Bassalo, Marcelo C.; Pines, Gur
  • Nature Biotechnology, Vol. 35, Issue 1, p. 48-55
  • DOI: 10.1038/nbt.3718

Engineering Cellular Metabolism
journal, March 2016


CRISPR/Cas9 advances engineering of microbial cell factories
journal, March 2016


Editing the Genome Without Double-Stranded DNA Breaks
journal, September 2017


Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR: Rapid and Marker-Free Cas9/CRISPR Refactoring
journal, June 2015

  • Tsai, Ching-Sung; Kong, In Iok; Lesmana, Anastashia
  • Biotechnology and Bioengineering, Vol. 112, Issue 11
  • DOI: 10.1002/bit.25632

    Works referencing / citing this record:

    Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae
    journal, July 2019

    • Zhang, Peng; Chen, Qian; Fu, Guiming
    • World Journal of Microbiology and Biotechnology, Vol. 35, Issue 7
    • DOI: 10.1007/s11274-019-2684-z

    Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae
    journal, July 2019

    • Zhang, Peng; Chen, Qian; Fu, Guiming
    • World Journal of Microbiology and Biotechnology, Vol. 35, Issue 7
    • DOI: 10.1007/s11274-019-2684-z

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.