DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropic magnetocaloric response in AlFe2B2

Abstract

Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe2B2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K~0.9 MJ/m3 at 50 K. Magnetic entropy change curves measured near the Curie transition temperature of 285 K reveal a large rotating magnetic entropy change of 1.3 J kg-1K-1 at μ0Happ = 2 T, consistent with large differences in magnetic entropy change ΔSmag measured along the a- and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe2B2 for thermal management applications.

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [4]; ORCiD logo [5];  [2];  [6]
  1. Northeastern Univ., Boston, MA (United States). College of Engineering
  2. Ames Lab., Ames, IA (United States). Division of Materials Science & Engineering
  3. Univ. of Delaware, Newark, DE (United States). Dept. of Physics and Astronomy
  4. Ames Lab., Ames, IA (United States). Division of Materials Science & Engineering; Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
  5. McCallum Consulting LLC, Santa Fe, NM (United States)
  6. Northeastern Univ., Boston, MA (United States). College of Engineering; Northeastern Univ., Boston, MA (United States). Mechanical Engineering
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1436423
Alternate Identifier(s):
OSTI ID: 1548702
Report Number(s):
IS-J-9650
Journal ID: ISSN 0925-8388; PII: S0925838818306923
Grant/Contract Number:  
AR00000754; AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Alloys and Compounds
Additional Journal Information:
Journal Volume: 745; Journal Issue: C; Journal ID: ISSN 0925-8388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Barua, R., Lejeune, B. T., Ke, L., Hadjipanayis, G., Levin, E. M., McCallum, R. W., Kramer, M. J., and Lewis, L. H. Anisotropic magnetocaloric response in AlFe2B2. United States: N. p., 2018. Web. doi:10.1016/j.jallcom.2018.02.205.
Barua, R., Lejeune, B. T., Ke, L., Hadjipanayis, G., Levin, E. M., McCallum, R. W., Kramer, M. J., & Lewis, L. H. Anisotropic magnetocaloric response in AlFe2B2. United States. https://doi.org/10.1016/j.jallcom.2018.02.205
Barua, R., Lejeune, B. T., Ke, L., Hadjipanayis, G., Levin, E. M., McCallum, R. W., Kramer, M. J., and Lewis, L. H. Mon . "Anisotropic magnetocaloric response in AlFe2B2". United States. https://doi.org/10.1016/j.jallcom.2018.02.205. https://www.osti.gov/servlets/purl/1436423.
@article{osti_1436423,
title = {Anisotropic magnetocaloric response in AlFe2B2},
author = {Barua, R. and Lejeune, B. T. and Ke, L. and Hadjipanayis, G. and Levin, E. M. and McCallum, R. W. and Kramer, M. J. and Lewis, L. H.},
abstractNote = {Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe2B2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K~0.9 MJ/m3 at 50 K. Magnetic entropy change curves measured near the Curie transition temperature of 285 K reveal a large rotating magnetic entropy change of 1.3 J kg-1K-1 at μ0Happ = 2 T, consistent with large differences in magnetic entropy change ΔSmag measured along the a- and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe2B2 for thermal management applications.},
doi = {10.1016/j.jallcom.2018.02.205},
journal = {Journal of Alloys and Compounds},
number = C,
volume = 745,
place = {United States},
year = {Mon Feb 19 00:00:00 EST 2018},
month = {Mon Feb 19 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Figures / Tables:

Table I Table I: Atomic coordinates and occupancies for AlFe2B2 at room temperature from XRD refinement

Save / Share:

Works referenced in this record:

The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models
journal, August 2012


Multivariable tuning of the magnetostructural response of a Ni-modified FeRh compound
journal, December 2016


A review on Mn based materials for magnetic refrigeration: Structure and properties
journal, August 2008


Magnetocaloric effect in MnFe(P,Si,Ge) compounds
journal, April 2006

  • Cam Thanh, D. T.; Brück, E.; Tegus, O.
  • Journal of Applied Physics, Vol. 99, Issue 8
  • DOI: 10.1063/1.2170589

Inverse magnetocaloric effects in metamagnetic Ni-Mn-In-based alloys in high magnetic fields
journal, February 2017


La(Fe,Si)13-based magnetic refrigerants obtained by novel processing routes
journal, November 2009

  • Lyubina, Julia; Gutfleisch, Oliver; Kuz’min, Michael D.
  • Journal of Magnetism and Magnetic Materials, Vol. 321, Issue 21
  • DOI: 10.1016/j.jmmm.2008.03.063

Exploring La(Fe,Si)13-based magnetic refrigerants towards application
journal, September 2012


Advanced materials for magnetic cooling: Fundamentals and practical aspects
journal, June 2017

  • Balli, M.; Jandl, S.; Fournier, P.
  • Applied Physics Reviews, Vol. 4, Issue 2
  • DOI: 10.1063/1.4983612

The crystal structure of Fe2AlB2
journal, January 1969

  • Jeitschko, W.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 25, Issue 1
  • DOI: 10.1107/S0567740869001944

Theoretical aspects of the magnetocaloric effect
journal, April 2010


Magnetocaloric effect in random magnetic anisotropy materials
journal, September 2002

  • Bohigas, Xavier; Tejada, Javier; Torres, Francesc
  • Applied Physics Letters, Vol. 81, Issue 13
  • DOI: 10.1063/1.1506777

Magnetic field induced phase transitions in Gd5(Si1.95Ge2.05) single crystal and the anisotropic magnetocaloric effect
journal, May 2003

  • Tang, H.; Pecharsky, A. O.; Schlagel, D. L.
  • Journal of Applied Physics, Vol. 93, Issue 10
  • DOI: 10.1063/1.1556259

Magnetization and the Magneto-Caloric Effect
journal, August 1931


Evolution of the concepts about the role of many-particle effects in transition metals, their alloys and compounds
journal, July 1989


Review of the Magnetocaloric Effect in RMnO3 and RMn2O5 Multiferroic Crystals
journal, February 2017

  • Balli, Mohamed; Roberge, Benoit; Fournier, Patrick
  • Crystals, Vol. 7, Issue 2
  • DOI: 10.3390/cryst7020044

Giant Rotating Magnetocaloric Effect in the Region of Spin-Reorientation Transition in the NdCo 5 Single Crystal
journal, September 2010


Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound
journal, July 2015

  • Zhang, Hu; Li, YaWei; Liu, Enke
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11929

Large room-temperature rotating magnetocaloric effect in NdCo4Al polycrystalline alloy
journal, January 2017


Investigation of magnetic properties and electronic structure of layered-structure borides Al T 2 B 2 ( T =Fe, Mn, Cr) and AlFe 2–x Mn x B 2
journal, April 2015


Magnetocaloric Effect in AlFe 2 B 2 : Toward Magnetic Refrigerants from Earth-Abundant Elements
journal, June 2013

  • Tan, Xiaoyan; Chai, Ping; Thompson, Corey M.
  • Journal of the American Chemical Society, Vol. 135, Issue 25
  • DOI: 10.1021/ja404107p

Magnetic properties of AlFe 2 B 2 and CeMn 2 Si 2 synthesized by melt spinning of stoichiometric compositions
journal, April 2015

  • Du, Qianheng; Chen, Guofu; Yang, Wenyun
  • Japanese Journal of Applied Physics, Vol. 54, Issue 5
  • DOI: 10.7567/JJAP.54.053003

Magnetic frustration and magnetocaloric effect in AlFe 2− x Mn x B 2 ( x = 0–0.5) ribbons
journal, July 2015


Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe2B2
journal, November 2015


On the ferromagnetism of AlFe2B2
journal, August 2011

  • ElMassalami, M.; Oliveira, D. da S.; Takeya, H.
  • Journal of Magnetism and Magnetic Materials, Vol. 323, Issue 16
  • DOI: 10.1016/j.jmmm.2011.03.008

Magnetic structure of the magnetocaloric compound AlFe2B2
journal, April 2016


Phase analysis of AlFe 2 B 2 by synchrotron X-ray diffraction, magnetic and Mössbauer studies
journal, April 2017

  • Ali, Tahir; Khan, M. N.; Ahmed, E.
  • Progress in Natural Science: Materials International, Vol. 27, Issue 2
  • DOI: 10.1016/j.pnsc.2017.03.007

Electronic structure and magnetic properties in T 2 AlB 2 ( T =Fe, Mn, Cr, Co, and Ni) and their alloys
journal, March 2017


The influence of magnetocrystalline anisotropy on the magnetocaloric effect: A case study on Co2B
journal, December 2016

  • Fries, M.; Skokov, K. P.; Karpenkov, D. Yu.
  • Applied Physics Letters, Vol. 109, Issue 23
  • DOI: 10.1063/1.4971839

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A local exchange-correlation potential for the spin polarized case. i
journal, July 1972


Inorganic structure types with revised space groups. I
journal, August 1991

  • Cenzual, K.; Gelato, L. M.; Penzo, M.
  • Acta Crystallographica Section B Structural Science, Vol. 47, Issue 4
  • DOI: 10.1107/S0108768191000903

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Atomic structure and lattice defects in nanolaminated ternary transition metal borides
journal, October 2016


Works referencing / citing this record:

Crystal structure, spin reorientation, and rotating magnetocaloric properties of NdCo 5- x Si x compounds
journal, June 2019

  • Wang, Kun; Zhang, Mingxiao; Liu, Jian
  • Journal of Applied Physics, Vol. 125, Issue 24
  • DOI: 10.1063/1.5093708

A progress report on the MAB phases: atomically laminated, ternary transition metal borides
text, January 2019


Rotating magnetocaloric effect over a wide room temperature range in oriented polycrystalline Nd 1 −  x Tb x Co 5
journal, January 2020

  • Su, Liqun; Zhang, Hu; Zhou, He
  • Journal of Applied Physics, Vol. 127, Issue 4
  • DOI: 10.1063/1.5124549

Coupling Phenomena in Magnetocaloric Materials
journal, August 2018

  • Waske, Anja; Dutta, Biswanath; Teichert, Niclas
  • Energy Technology, Vol. 6, Issue 8
  • DOI: 10.1002/ente.201800163

A progress report on the MAB phases: atomically laminated, ternary transition metal borides
text, January 2019


A progress report on the MAB phases: atomically laminated, ternary transition metal borides
journal, July 2019