skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vortex circulation and polarity patterns in closely packed cap arrays

Abstract

For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetry axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.

Authors:
 [1];  [2];  [3];  [3];  [3];  [4];  [5]
  1. Leibniz Inst. for Solid State and Materials Research in Dresden (IFW Dresden) (Germany). Inst. for Integrative Nanosciences; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) and Materials Sciences Division
  2. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy
  3. Leibniz Inst. for Solid State and Materials Research in Dresden (IFW Dresden) (Germany). Inst. for Solid State Research
  4. Leibniz Inst. for Solid State and Materials Research in Dresden (IFW Dresden) (Germany). Inst. for Integrative Nanosciences; Chemnitz Univ. of Technology (Germany). Material Systems for Nanoelectronics
  5. Leibniz Inst. for Solid State and Materials Research in Dresden (IFW Dresden) (Germany). Inst. for Integrative Nanosciences; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany). Inst. of Ion Beam Physics and Materials Research
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Leibniz Inst. for Solid State and Materials Research in Dresden (IFW Dresden) (Germany); Bogolyubov Inst. for Theoretical Physics (BITP), Kyiv (Ukraine); European Research Council (ERC); European Union (EU)
OSTI Identifier:
1436329
Grant/Contract Number:  
AC02-05CH11231; 306277; 618083
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 108; Journal Issue: 4; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; thin film nucleation; nucleation; rotating flows; phase diagrams; crystal structure; nanostructures; magnetic films; permalloys; magnetic fields

Citation Formats

Streubel, Robert, Kronast, Florian, Reiche, Christopher F., Muhl, Thomas, Wolter, Anja U. B., Schmidt, Oliver G., and Makarov, Denys. Vortex circulation and polarity patterns in closely packed cap arrays. United States: N. p., 2016. Web. doi:10.1063/1.4941045.
Streubel, Robert, Kronast, Florian, Reiche, Christopher F., Muhl, Thomas, Wolter, Anja U. B., Schmidt, Oliver G., & Makarov, Denys. Vortex circulation and polarity patterns in closely packed cap arrays. United States. doi:10.1063/1.4941045.
Streubel, Robert, Kronast, Florian, Reiche, Christopher F., Muhl, Thomas, Wolter, Anja U. B., Schmidt, Oliver G., and Makarov, Denys. Mon . "Vortex circulation and polarity patterns in closely packed cap arrays". United States. doi:10.1063/1.4941045. https://www.osti.gov/servlets/purl/1436329.
@article{osti_1436329,
title = {Vortex circulation and polarity patterns in closely packed cap arrays},
author = {Streubel, Robert and Kronast, Florian and Reiche, Christopher F. and Muhl, Thomas and Wolter, Anja U. B. and Schmidt, Oliver G. and Makarov, Denys},
abstractNote = {For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetry axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.},
doi = {10.1063/1.4941045},
journal = {Applied Physics Letters},
number = 4,
volume = 108,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Soft-magnetic Py caps on SiO2 particles that exhibit a thickness gradient stabilizing the vortex state even in closely packed arrays. (b) Magnetic hysteresis curves for Py fi lms deposited onto spheres of various diameter and various thickness recorded with SQUID magnetometry at room temperature while sweeping themore » magnetic field perpendicularly to the substrate surface. (c) Magnetic phase diagram at room temperature. The two magnetic phases, vortex and onion state, are indicated with a solid line as a guide-to-the-eye. (d) Vortex annihilation fi eld as a function of the aspect ratio.« less

Save / Share:

Works referenced in this record:

Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions
journal, October 2009


Arrays of magnetic nanoindentations with perpendicular anisotropy
journal, February 2007

  • Makarov, D.; Baraban, L.; Guhr, I. L.
  • Applied Physics Letters, Vol. 90, Issue 9
  • DOI: 10.1063/1.2709513

Magnetic Microhelix Coil Structures
journal, August 2011


Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk
journal, January 2012

  • Im, Mi-Young; Fischer, Peter; Yamada, Keisuke
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1978

Single vortex core recording in a magnetic vortex lattice
journal, February 2014

  • Mitin, D.; Nissen, D.; Schädlich, P.
  • Journal of Applied Physics, Vol. 115, Issue 6
  • DOI: 10.1063/1.4865746

Equilibrium magnetic states in individual hemispherical permalloy caps
journal, September 2012

  • Streubel, Robert; Kravchuk, Volodymyr P.; Sheka, Denis D.
  • Applied Physics Letters, Vol. 101, Issue 13
  • DOI: 10.1063/1.4756708

Temperature dependent magnetization reversal of exchange biased magnetic vortices in IrMn/Fe microcaps
journal, July 2014

  • Thomas, S.; Nissen, D.; Albrecht, M.
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4890380

Single-Domain Circular Nanomagnets
journal, August 1999


Spin-Cherenkov effect and magnonic Mach cones
journal, December 2013


Curvature Effects in Thin Magnetic Shells
journal, June 2014


Magnetization reversal due to vortex nucleation, displacement, and annihilation in submicron ferromagnetic dot arrays
journal, December 2001


Coupling of Chiralities in Spin and Physical Spaces: The Möbius Ring as a Case Study
journal, May 2015


Out-of-surface vortices in spherical shells
journal, April 2012


Magnetic multilayers on nanospheres
journal, February 2005

  • Albrecht, Manfred; Hu, Guohan; Guhr, Ildico L.
  • Nature Materials, Vol. 4, Issue 3
  • DOI: 10.1038/nmat1324

Domain wall motion on magnetic nanotubes
journal, August 2010

  • Landeros, P.; Núñez, Álvaro S.
  • Journal of Applied Physics, Vol. 108, Issue 3
  • DOI: 10.1063/1.3466747

Microscopic reversal behavior of magnetically capped nanospheres
journal, February 2010


Magnetically Capped Rolled-up Nanomembranes
journal, July 2012

  • Streubel, Robert; Thurmer, Dominic J.; Makarov, Denys
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl301147h

Beating the Walker Limit with Massless Domain Walls in Cylindrical Nanowires
journal, February 2010


Curvature effects in statics and dynamics of low dimensional magnets
journal, March 2015

  • Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri
  • Journal of Physics A: Mathematical and Theoretical, Vol. 48, Issue 12
  • DOI: 10.1088/1751-8113/48/12/125202

Curvature-Induced Magnetochirality
journal, September 2013


Controllable vortex chirality switching on spherical shells
journal, February 2015

  • Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.
  • Journal of Applied Physics, Vol. 117, Issue 8
  • DOI: 10.1063/1.4913486

Magnetic coupling of vortices in a two-dimensional lattice
journal, October 2015


Reconfigurable large-area magnetic vortex circulation patterns
journal, September 2015


Anisotropic Superexchange Interaction and Weak Ferromagnetism
journal, October 1960


Frustrated magnetic vortices in hexagonal lattice of magnetic nanocaps
journal, February 2012


Chirality switching and propagation control of a vortex domain wall in ferromagnetic nanotubes
journal, February 2012

  • Otálora, J. A.; López-López, J. A.; Vargas, P.
  • Applied Physics Letters, Vol. 100, Issue 7
  • DOI: 10.1063/1.3687154

Chiral symmetry breaking and pair-creation mediated Walker breakdown in magnetic nanotubes
journal, June 2012

  • Yan, Ming; Andreas, Christian; Kákay, Attila
  • Applied Physics Letters, Vol. 100, Issue 25
  • DOI: 10.1063/1.4727909

Magnetic Films on Nanoparticle Arrays
journal, August 2012


Magnetic vortices on closely packed spherically curved surfaces
journal, May 2012


Effect of magnetic coupling on the magnetization reversal in arrays of magnetic nanocaps
journal, February 2010


Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission
journal, September 2011

  • Yan, Ming; Andreas, Christian; Kákay, Attila
  • Applied Physics Letters, Vol. 99, Issue 12
  • DOI: 10.1063/1.3643037

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.