skip to main content

DOE PAGESDOE PAGES

Title: Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction

Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Here in this paper, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm -2, and evaluated the resulting nanoparticulate films for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm -2 current densities per geometric area at overpotentials of ~0.35–0.5 V.
Authors:
 [1] ;  [1] ;  [2] ;  [2] ;  [3]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP); California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Chemistry and Chemical Engineering
  3. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP); Stanford Univ., CA (United States). Dept. of Chemical Engineering
Publication Date:
Grant/Contract Number:
SC0004993
Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 4; Journal Issue: 8; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Research Org:
California Inst. of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1436119