DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recovery of Active and Efficient Photocatalytic H2 Production for CdSe Quantum Dots

Abstract

Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionic acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreasedmore » surface electron density for large diameter QDs.« less

Authors:
 [1];  [1];  [1];  [2]
  1. Univ. of Rochester, NY (United States). Dept. of Chemistry
  2. Univ. of Rochester, NY (United States). Dept. of Chemistry and Inst. of Optics
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1436089
Grant/Contract Number:  
SC0002106; FG02-09ER16121
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 25; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Burke, Rebeckah, Cogan, Nicole M. Briglio, Oi, Aidan, and Krauss, Todd D.. Recovery of Active and Efficient Photocatalytic H2 Production for CdSe Quantum Dots. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b01237.
Burke, Rebeckah, Cogan, Nicole M. Briglio, Oi, Aidan, & Krauss, Todd D.. Recovery of Active and Efficient Photocatalytic H2 Production for CdSe Quantum Dots. United States. https://doi.org/10.1021/acs.jpcc.8b01237
Burke, Rebeckah, Cogan, Nicole M. Briglio, Oi, Aidan, and Krauss, Todd D.. Mon . "Recovery of Active and Efficient Photocatalytic H2 Production for CdSe Quantum Dots". United States. https://doi.org/10.1021/acs.jpcc.8b01237. https://www.osti.gov/servlets/purl/1436089.
@article{osti_1436089,
title = {Recovery of Active and Efficient Photocatalytic H2 Production for CdSe Quantum Dots},
author = {Burke, Rebeckah and Cogan, Nicole M. Briglio and Oi, Aidan and Krauss, Todd D.},
abstractNote = {Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionic acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.},
doi = {10.1021/acs.jpcc.8b01237},
journal = {Journal of Physical Chemistry. C},
number = 25,
volume = 122,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Chemistry of Personalized Solar Energy
journal, November 2009


Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light
journal, December 1981


Fuel from Water: The Photochemical Generation of Hydrogen from Water
journal, June 2014

  • Han, Zhiji; Eisenberg, Richard
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5001605

Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst
journal, November 2012


Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals
journal, June 2011

  • Jasieniak, Jacek; Califano, Marco; Watkins, Scott E.
  • ACS Nano, Vol. 5, Issue 7
  • DOI: 10.1021/nn201681s

Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS)
journal, October 2016


Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals
journal, July 2003

  • Yu, W. William; Qu, Lianhua; Guo, Wenzhuo
  • Chemistry of Materials, Vol. 15, Issue 14, p. 2854-2860
  • DOI: 10.1021/cm034081k

On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots
journal, August 2002

  • Leatherdale, C. A.; Woo, W. -K.; Mikulec, F. V.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 31
  • DOI: 10.1021/jp025698c

Perspectives on the Physical Chemistry of Semiconductor Nanocrystals
journal, January 1996

  • Alivisatos, A. P.
  • The Journal of Physical Chemistry, Vol. 100, Issue 31
  • DOI: 10.1021/jp9535506

Semiconductor Nanocrystals as Fluorescent Biological Labels
patent, September 1998


Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures
journal, March 2010

  • Amirav, Lilac; Alivisatos, A. Paul
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 7
  • DOI: 10.1021/jz100075c

Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation
journal, August 2010

  • Berr, Maximilian; Vaneski, Aleksandar; Susha, Andrei S.
  • Applied Physics Letters, Vol. 97, Issue 9
  • DOI: 10.1063/1.3480613

Photocatalytic Hydrogen Generation Efficiencies in One-Dimensional CdSe Heterostructures
journal, October 2012

  • Tongying, Pornthip; Plashnitsa, Vladimir V.; Petchsang, Nattasamon
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 21
  • DOI: 10.1021/jz301628b

Improving the Catalytic Activity of Semiconductor Nanocrystals through Selective Domain Etching
journal, April 2013

  • Khon, Elena; Lambright, Kelly; Khnayzer, Rony S.
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400715n

Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods
journal, January 2016

  • Ben-Shahar, Yuval; Scotognella, Francesco; Kriegel, Ilka
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10413

Near Unity Quantum Yield of Light-Driven Redox Mediator Reduction and Efficient H 2 Generation Using Colloidal Nanorod Heterostructures
journal, July 2012

  • Zhu, Haiming; Song, Nianhui; Lv, Hongjin
  • Journal of the American Chemical Society, Vol. 134, Issue 28
  • DOI: 10.1021/ja303698e

Perfect Photon-to-Hydrogen Conversion Efficiency
journal, February 2016


Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes
journal, September 2016

  • Lv, Hongjin; Ruberu, T. Purnima A.; Fleischauer, Valerie E.
  • Journal of the American Chemical Society, Vol. 138, Issue 36
  • DOI: 10.1021/jacs.6b05040

Characterization of Photochemical Processes for H 2 Production by CdS Nanorod–[FeFe] Hydrogenase Complexes
journal, March 2012

  • Brown, Katherine A.; Wilker, Molly B.; Boehm, Marko
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja2116348

Exceptional Poly(acrylic acid)-Based Artificial [FeFe]-Hydrogenases for Photocatalytic H 2 Production in Water
journal, June 2013

  • Wang, Feng; Liang, Wen-Jing; Jian, Jing-Xin
  • Angewandte Chemie International Edition, Vol. 52, Issue 31
  • DOI: 10.1002/anie.201303110

Branched Polyethylenimine Improves Hydrogen Photoproduction from a CdSe Quantum Dot/[FeFe]-Hydrogenase Mimic System in Neutral Aqueous Solutions
journal, January 2015

  • Liang, Wen-Jing; Wang, Feng; Wen, Min
  • Chemistry - A European Journal, Vol. 21, Issue 8
  • DOI: 10.1002/chem.201406361

Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange
journal, September 2013

  • Das, A.; Han, Z.; Haghighi, M. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 42
  • DOI: 10.1073/pnas.1316755110

Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production
journal, September 2012

  • Huang, Jier; Mulfort, Karen L.; Du, Pingwu
  • Journal of the American Chemical Society, Vol. 134, Issue 40
  • DOI: 10.1021/ja3062584

Ligand removal from CdS quantum dots for enhanced photocatalytic H 2 generation in pH neutral water
journal, January 2016

  • Chang, Christina M.; Orchard, Katherine L.; Martindale, Benjamin C. M.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA04136H

Nickel Complexes for Robust Light-Driven and Electrocatalytic Hydrogen Production from Water
journal, January 2015


Visible Light Catalysis-Assisted Assembly of Ni h -QD Hollow Nanospheres in Situ via Hydrogen Bubbles
journal, May 2014

  • Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja5047236

Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals
journal, January 2012

  • Holmes, Michael A.; Townsend, Troy K.; Osterloh, Frank E.
  • Chem. Commun., Vol. 48, Issue 3
  • DOI: 10.1039/C1CC16082F

Quantum Confinement Controls Photocatalysis: A Free Energy Analysis for Photocatalytic Proton Reduction at CdSe Nanocrystals
journal, April 2013

  • Zhao, Jing; Holmes, Michael A.; Osterloh, Frank E.
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn400826h

Aqueous Photogeneration of H 2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics
journal, December 2014

  • Liu, Cunming; Qiu, Fen; Peterson, Jeffrey J.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 24
  • DOI: 10.1021/jp510935w

Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles
journal, August 2016


Control of Photoluminescence Properties of CdSe Nanocrystals in Growth
journal, March 2002

  • Qu, Lianhua; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 124, Issue 9
  • DOI: 10.1021/ja017002j

Uncovering Hot Hole Dynamics in CdSe Nanocrystals
journal, August 2014

  • Liu, Cunming; Peterson, Jeffrey J.; Krauss, Todd D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz5015554

Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals
journal, July 2000

  • Klimov, Victor I.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 26
  • DOI: 10.1021/jp9944132

Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the Composition of the Dot’s Ligand Shell
journal, March 2017

  • Zhang, Zhengyi; Edme, Kedy; Lian, Shichen
  • Journal of the American Chemical Society, Vol. 139, Issue 12
  • DOI: 10.1021/jacs.6b13220

The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor–Metal Heterostructured Nanocrystals
journal, July 2011

  • Acharya, Krishna P.; Khnayzer, Rony S.; O’Connor, Timothy
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl201388c

Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot
journal, January 2016

  • Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.
  • Journal of the American Chemical Society, Vol. 138, Issue 5
  • DOI: 10.1021/jacs.5b11353

Electron and hole relaxation pathways in semiconductor quantum dots
journal, November 1999


Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasers
journal, July 1999


Tuning the Emission of CdSe Quantum Dots by Controlled Trap Enhancement
journal, July 2010

  • Baker, David R.; Kamat, Prashant V.
  • Langmuir, Vol. 26, Issue 13
  • DOI: 10.1021/la100580g

Ultrafast Charge Transfer from CdSe Quantum Dots to p-Type NiO: Hole Injection vs Hole Trapping
journal, July 2014

  • Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed
  • The Journal of Physical Chemistry C, Vol. 118, Issue 32
  • DOI: 10.1021/jp506963q

Impact of Chalcogenide Ligands on Excited State Dynamics in CdSe Quantum Dots
journal, May 2015

  • Schnitzenbaumer, Kyle J.; Labrador, Tais; Dukovic, Gordana
  • The Journal of Physical Chemistry C, Vol. 119, Issue 23
  • DOI: 10.1021/acs.jpcc.5b02880

Hot electron and hole dynamics in thiol-capped CdSe quantum dots revealed by 2D electronic spectroscopy
journal, January 2016

  • Lenngren, Nils; Abdellah, Mohamed A.; Zheng, Kaibo
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 37
  • DOI: 10.1039/C6CP04190F

Hydrophilic, Hole-Delocalizing Ligand Shell to Promote Charge Transfer from Colloidal CdSe Quantum Dots in Water
journal, July 2017

  • Lee, Jonathan R.; Li, Wei; Cowan, Alexander J.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 28
  • DOI: 10.1021/acs.jpcc.7b02949

Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B
journal, December 2009

  • Boulesbaa, Abdelaziz; Huang, Zhuangqun; Wu, David
  • The Journal of Physical Chemistry C, Vol. 114, Issue 2
  • DOI: 10.1021/jp909972b

Simultaneous Determination of the Adsorption Constant and the Photoinduced Electron Transfer Rate for a Cds Quantum Dot–Viologen Complex
journal, July 2011

  • Morris-Cohen, Adam J.; Frederick, Matthew T.; Cass, Laura C.
  • Journal of the American Chemical Society, Vol. 133, Issue 26
  • DOI: 10.1021/ja2010237

Kinetics of quenching of luminescent probes in micellar systems. II
journal, January 1982

  • Tachiya, M.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442728

Quenching of fluorescence from pyrene in micellar solutions by cationic quenchers
journal, January 1978


Differences in Cross-Link Chemistry between Rigid and Flexible Dithiol Molecules Revealed by Optical Studies of CdTe Quantum Dots
journal, August 2007

  • Koole, R.; Luigjes, B.; Tachiya, M.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 30
  • DOI: 10.1021/jp072407x

Exciton Dissociation in CdSe Quantum Dots by Hole Transfer to Phenothiazine
journal, November 2008

  • Huang, Jier; Huang, Zhuangqun; Jin, Shengye
  • The Journal of Physical Chemistry C, Vol. 112, Issue 49
  • DOI: 10.1021/jp808291u

A Stochastic Model for Energy Transfer from CdS Quantum Dots/Rods (Donors) to Nile Red Dye (Acceptors)
journal, October 2009

  • Sadhu, Suparna; Tachiya, Masanori; Patra, Amitava
  • The Journal of Physical Chemistry C, Vol. 113, Issue 45
  • DOI: 10.1021/jp906160z

Mechanisms for Adsorption of Methyl Viologen on CdS Quantum Dots
journal, February 2014

  • Peterson, Mark D.; Jensen, Stephen C.; Weinberg, David J.
  • ACS Nano, Vol. 8, Issue 3
  • DOI: 10.1021/nn406651a

Ultrafast Charge Separation at the CdSe Quantum Dot/Methylviologen Interface: Dependence on Electron Acceptor Concentration
journal, April 2011

  • Dworak, Lars; Wachtveitl, Josef
  • Zeitschrift für Physikalische Chemie, Vol. 225, Issue 5
  • DOI: 10.1524/zpch.2011.0105

High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Cyclic Diphosphine Ligands Containing One Pendant Amine
journal, February 2013

  • Stewart, Michael P.; Ho, Ming-Hsun; Wiese, Stefan
  • Journal of the American Chemical Society, Vol. 135, Issue 16
  • DOI: 10.1021/ja400181a

Charge Transfer Dynamics between Photoexcited CdS Nanorods and Mononuclear Ru Water-Oxidation Catalysts
journal, February 2013

  • Tseng, Huan-Wei; Wilker, Molly B.; Damrauer, Niels H.
  • Journal of the American Chemical Society, Vol. 135, Issue 9
  • DOI: 10.1021/ja400178g

Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion
journal, January 2012

  • Zhu, Haiming; Lian, Tianquan
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22679k

Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots
journal, May 2014

  • Gimbert-Suriñach, Carolina; Albero, Josep; Stoll, Thibaut
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja501489h

Works referencing / citing this record:

Size dependence of photocatalytic hydrogen generation for CdTe quantum dots
journal, November 2019

  • Yin, Jiajia; Cogan, Nicole M. B.; Burke, Rebeckah
  • The Journal of Chemical Physics, Vol. 151, Issue 17
  • DOI: 10.1063/1.5125000

Construction of ternary CdxMo1−xSe quantum dots for enhanced photocatalytic hydrogen production
journal, October 2019