skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charting the energy landscape of metal/organic interfaces via machine learning

Abstract

The rich polymorphism exhibited by inorganic/organic interfaces is a major challenge for materials design. Here in this work, we present a method to efficiently explore the potential energy surface and predict the formation energies of polymorphs and defects. This is achieved by training a machine learning model on a list of only 100 candidate structures that are evaluated via dispersion-corrected density functional theory (DFT) calculations. Finally, we demonstrate the power of this approach for tetracyanoethylene on Ag(100) and explain the anisotropic ordering that is observed experimentally.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Graz Univ. of Technology (Austria). Inst. of Solid State Physics
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Graz Univ. of Technology (Austria)
Sponsoring Org.:
USDOE Office of Science (SC); Austrian Science Fund (FWF)
OSTI Identifier:
1436084
Alternate Identifier(s):
OSTI ID: 1433460
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 4; Related Information: https://journals.aps.org/prmaterials/supplemental/10.1103/PhysRevMaterials.2.043803/PRM_SUI.pdf; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; machine learning; DFT; interface; structure search; defect; TCNE; Ag

Citation Formats

Scherbela, Michael, Hormann, Lukas, Jeindl, Andreas, Obersteiner, Veronika, and Hofmann, Oliver T. Charting the energy landscape of metal/organic interfaces via machine learning. United States: N. p., 2018. Web. doi:10.1103/PhysRevMaterials.2.043803.
Scherbela, Michael, Hormann, Lukas, Jeindl, Andreas, Obersteiner, Veronika, & Hofmann, Oliver T. Charting the energy landscape of metal/organic interfaces via machine learning. United States. doi:10.1103/PhysRevMaterials.2.043803.
Scherbela, Michael, Hormann, Lukas, Jeindl, Andreas, Obersteiner, Veronika, and Hofmann, Oliver T. Tue . "Charting the energy landscape of metal/organic interfaces via machine learning". United States. doi:10.1103/PhysRevMaterials.2.043803. https://www.osti.gov/servlets/purl/1436084.
@article{osti_1436084,
title = {Charting the energy landscape of metal/organic interfaces via machine learning},
author = {Scherbela, Michael and Hormann, Lukas and Jeindl, Andreas and Obersteiner, Veronika and Hofmann, Oliver T.},
abstractNote = {The rich polymorphism exhibited by inorganic/organic interfaces is a major challenge for materials design. Here in this work, we present a method to efficiently explore the potential energy surface and predict the formation energies of polymorphs and defects. This is achieved by training a machine learning model on a list of only 100 candidate structures that are evaluated via dispersion-corrected density functional theory (DFT) calculations. Finally, we demonstrate the power of this approach for tetracyanoethylene on Ag(100) and explain the anisotropic ordering that is observed experimentally.},
doi = {10.1103/PhysRevMaterials.2.043803},
journal = {Physical Review Materials},
number = 4,
volume = 2,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Characterization of the Interface Dipole at Organic/ Metal Interfaces
journal, July 2002

  • Crispin, Xavier; Geskin, Victor; Crispin, Annica
  • Journal of the American Chemical Society, Vol. 124, Issue 27
  • DOI: 10.1021/ja025673r

Density-Functional Theory with Screened van der Waals Interactions for the Modeling of Hybrid Inorganic-Organic Systems
journal, April 2012


Structure Prediction for Surface-Induced Phases of Organic Monolayers: Overcoming the Combinatorial Bottleneck
journal, June 2017


Ab-initio simulations of materials using VASP: Density-functional theory and beyond
journal, October 2008

  • Hafner, Jürgen
  • Journal of Computational Chemistry, Vol. 29, Issue 13
  • DOI: 10.1002/jcc.21057

Temperature-controlled metal/ligand stoichiometric ratio in Ag-TCNE coordination networks
journal, March 2015

  • Rodríguez-Fernández, Jonathan; Lauwaet, Koen; Herranz, Maria Ángeles
  • The Journal of Chemical Physics, Vol. 142, Issue 10
  • DOI: 10.1063/1.4913326

Naphthalene’s Six Shades on Graphite: A Detailed Study on the Polymorphism of an Apparently Simple System
journal, September 2016

  • Sojka, Falko; Meissner, Matthias; Yamada, Takashi
  • The Journal of Physical Chemistry C, Vol. 120, Issue 40
  • DOI: 10.1021/acs.jpcc.6b06702

Adsorption and STM imaging of tetracyanoethylene on Ag(001): An ab initio study
journal, January 2014


Single-Molecule Charge Transfer and Bonding at an Organic/Inorganic Interface:  Tetracyanoethylene on Noble Metals
journal, January 2008

  • Wegner, Daniel; Yamachika, Ryan; Wang, Yayu
  • Nano Letters, Vol. 8, Issue 1
  • DOI: 10.1021/nl072217y

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

Accurate and Efficient Method for Many-Body van der Waals Interactions
journal, June 2012


Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy
journal, September 2013


Interface dipoles of organic molecules on Ag(111) in hybrid density-functional theory
journal, December 2013


The Many Roles of Computation in Drug Discovery
journal, March 2004


Static and lattice vibrational energy differences between polymorphs
journal, January 2015


Ab initio molecular simulations with numeric atom-centered orbitals
journal, November 2009

  • Blum, Volker; Gehrke, Ralf; Hanke, Felix
  • Computer Physics Communications, Vol. 180, Issue 11
  • DOI: 10.1016/j.cpc.2009.06.022

Electronic structure of thiol-bonded self-assembled monolayers: Impact of coverage
journal, January 2008


Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
journal, January 2011

  • Behler, Jörg
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 40
  • DOI: 10.1039/c1cp21668f

Chemical and entropic control on the molecular self-assembly process
journal, February 2017

  • Packwood, Daniel M.; Han, Patrick; Hitosugi, Taro
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14463

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces
journal, April 2011

  • Djuric, Tatjana; Ules, Thomas; Flesch, Heinz-Georg
  • Crystal Growth & Design, Vol. 11, Issue 4
  • DOI: 10.1021/cg101230j

Global structure search for molecules on surfaces: Efficient sampling with curvilinear coordinates
journal, August 2016

  • Krautgasser, Konstantin; Panosetti, Chiara; Palagin, Dennis
  • The Journal of Chemical Physics, Vol. 145, Issue 8
  • DOI: 10.1063/1.4961259

Global Materials Structure Search with Chemically Motivated Coordinates
journal, November 2015


Role of Dispersion Interactions in the Polymorphism and Entropic Stabilization of the Aspirin Crystal
journal, July 2014


Adsorption Site Determination of a Molecular Monolayer via Inelastic Tunneling
journal, May 2013

  • Wegner, Daniel; Yamachika, Ryan; Zhang, Xiaowei
  • Nano Letters, Vol. 13, Issue 6
  • DOI: 10.1021/nl304081q

Algorithm AS 295: A Fedorov Exchange Algorithm for D-Optimal Design
journal, January 1994

  • Miller, Alan J.; Nguyen, Nam-Ky
  • Applied Statistics, Vol. 43, Issue 4
  • DOI: 10.2307/2986264

Strongly Reshaped Organic-Metal Interfaces: Tetracyanoethylene on Cu(100)
journal, November 2008