DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries

Abstract

Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this paper, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. Finally, this work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering
  2. Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Science Foundation (NSF)
OSTI Identifier:
1435963
Alternate Identifier(s):
OSTI ID: 1430273
Report Number(s):
DOE-PENNSTATE-0007795
Journal ID: ISSN 1936-0851; PII:974
Grant/Contract Number:  
EE0007795; CMMI-1435766
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 12; Journal Issue: 2; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 42 ENGINEERING; lithium metal anodes; lithium organopolysulfides; lithium organosulfides; lithium-sulfur battery; solid-electrolyte interphase

Citation Formats

Li, Guoxing, Huang, Qingquan, He, Xin, Gao, Yue, Wang, Daiwei, Kim, Seong H., and Wang, Donghai. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries. United States: N. p., 2018. Web. doi:10.1021/acsnano.7b08035.
Li, Guoxing, Huang, Qingquan, He, Xin, Gao, Yue, Wang, Daiwei, Kim, Seong H., & Wang, Donghai. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries. United States. https://doi.org/10.1021/acsnano.7b08035
Li, Guoxing, Huang, Qingquan, He, Xin, Gao, Yue, Wang, Daiwei, Kim, Seong H., and Wang, Donghai. Mon . "Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries". United States. https://doi.org/10.1021/acsnano.7b08035. https://www.osti.gov/servlets/purl/1435963.
@article{osti_1435963,
title = {Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries},
author = {Li, Guoxing and Huang, Qingquan and He, Xin and Gao, Yue and Wang, Daiwei and Kim, Seong H. and Wang, Donghai},
abstractNote = {Lithium–sulfur (Li–S) batteries are promising candidates for high-energy storage devices due to high theoretical capacities of both the sulfur cathode and lithium (Li) metal anode. Considerable efforts have been devoted to improving sulfur cathodes. However, issues associated with Li anodes, such as low Coulombic efficiency (CE) and growth of Li dendrites, remain unsolved due to unstable solid-electrolyte interphase (SEI) and lead to poor capacity retention and a short cycling life of Li–S batteries. In this paper, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer through co-deposition of aromatic-based organosulfides and inorganic Li salts using poly(sulfur-random-1,3-diisopropenylbenzene) as an additive in an electrolyte. The aromatic-based organic components with planar backbone conformation and π–π interaction in the SEI layers can improve the toughness and flexibility to promote stable and high efficient Li deposition/dissolution. The as-formed durable SEI layer can inhibit dendritic Li growth, enhance Li deposition/dissolution CE (99.1% over 420 cycles), and in turn enable Li–S batteries with good cycling stability (1000 cycles) and slow capacity decay. Finally, this work demonstrates a route to address the issues associated with Li metal anodes and promote the development of high-energy rechargeable Li metal batteries.},
doi = {10.1021/acsnano.7b08035},
journal = {ACS Nano},
number = 2,
volume = 12,
place = {United States},
year = {Mon Jan 29 00:00:00 EST 2018},
month = {Mon Jan 29 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 115 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Mechanism of self-formation of hybrid SEI layer. (a) Aromatic-based organic components and inorganic components generated from PSD after reacting with Li metal in the electrolyte. (b) Self-formation of the stable hybrid SEI layer composed of Li organosulfides/organopolysulfides-Li2S/Li2S2 using the PSD as an electrolyte additive.

Save / Share:

Works referenced in this record:

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

New insights into the limiting parameters of the Li/S rechargeable cell
journal, February 2012


Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26, p. 5904-5908
  • DOI: 10.1002/anie.201100637

Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411109

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries
journal, February 2016

  • Li, Guoxing; Sun, Jinhua; Hou, Wenpeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10601

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


The Effect of Interactions and Reduction Products of LiNO 3 , the Anti-Shuttle Agent, in Li-S Battery Systems
journal, December 2014

  • Rosenman, Ariel; Elazari, Ran; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0861503jes

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery
journal, August 2017


Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium–Sulfur Batteries
journal, August 2016


Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries
journal, June 2014

  • Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 24, Issue 33
  • DOI: 10.1002/adfm.201400845

Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries
journal, January 2014

  • Huang, Jia-Qi; Zhang, Qiang; Peng, Hong-Jie
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42223B

Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
journal, January 2012

  • Su, Yu-Sheng; Manthiram, Arumugam
  • Nature Communications, Vol. 3, Article No. 1166
  • DOI: 10.1038/ncomms2163

Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries
journal, February 2016

  • Chen, Shuru; Dai, Fang; Gordin, Mikhail L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 13
  • DOI: 10.1002/anie.201511830

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

The distribution function of surface charge density with respect to surface curvature
journal, January 1986


The application of a surface charge density distribution function to the solution of boundary value problems
journal, December 1987


Effects of Triacetoxyvinylsilane as SEI Layer Additive on Electrochemical Performance of Lithium Metal Secondary Battery
journal, January 2007

  • Lee, Yong Min; Seo, Jeong Eun; Lee, Young-Gi
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 9
  • DOI: 10.1149/1.2750439

Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
journal, February 2004


Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles
journal, January 1999

  • Shiraishi, Soshi
  • Journal of The Electrochemical Society, Vol. 146, Issue 5
  • DOI: 10.1149/1.1391818

Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure
journal, November 2014

  • Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu
  • Nano Letters, Vol. 14, Issue 12
  • DOI: 10.1021/nl5039117

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode
journal, December 2015

  • Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201503169

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Protection of lithium metal surfaces using tetraethoxysilane
journal, January 2011

  • Umeda, Grant A.; Menke, Erik; Richard, Monique
  • J. Mater. Chem., Vol. 21, Issue 5
  • DOI: 10.1039/C0JM02305A

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries
journal, March 2017

  • Li, Qi; Zhu, Shoupu; Lu, Yingying
  • Advanced Functional Materials, Vol. 27, Issue 18
  • DOI: 10.1002/adfm.201606422

Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes
journal, June 2017

  • Zuo, Tong-Tong; Wu, Xiong-Wei; Yang, Chun-Peng
  • Advanced Materials, Vol. 29, Issue 29
  • DOI: 10.1002/adma.201700389

Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons
journal, April 2017

  • Ye, Huan; Xin, Sen; Yin, Ya-Xia
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b01763

Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries
journal, July 2014

  • Griebel, Jared J.; Li, Guoxing; Glass, Richard S.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 2
  • DOI: 10.1002/pola.27314

The use of elemental sulfur as an alternative feedstock for polymeric materials
journal, April 2013

  • Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1624

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder
journal, January 1998

  • Funabiki, Atsushi
  • Journal of The Electrochemical Society, Vol. 145, Issue 1
  • DOI: 10.1149/1.1838231

Works referencing / citing this record:

The Radical Pathway Based on a Lithium‐Metal‐Compatible High‐Dielectric Electrolyte for Lithium–Sulfur Batteries
journal, December 2018

  • Zhang, Ge; Peng, Hong‐Jie; Zhao, Chen‐Zi
  • Angewandte Chemie International Edition, Vol. 57, Issue 51
  • DOI: 10.1002/anie.201810132

Manipulating Polysulfide Conversion with Strongly Coupled Fe 3 O 4 and Nitrogen Doped Carbon for Stable and High Capacity Lithium-Sulfur Batteries
journal, November 2018

  • Lu, Ke; Zhang, Hong; Gao, Siyuan
  • Advanced Functional Materials, Vol. 29, Issue 4
  • DOI: 10.1002/adfm.201807309

Uniform Lithium Nucleation Guided by Atomically Dispersed Lithiophilic CoN x Sites for Safe Lithium Metal Batteries
journal, November 2018


Anode Interface Engineering and Architecture Design for High‐Performance Lithium–Sulfur Batteries
journal, January 2019


The Challenge of Lithium Metal Anodes for Practical Applications
journal, April 2019


Low-volume-change, dendrite-free lithium metal anodes enabled by lithophilic 3D matrix with LiF-enriched surface
journal, January 2019

  • Feng, Yangyang; Zhang, Chaofan; Li, Bing
  • Journal of Materials Chemistry A, Vol. 7, Issue 11
  • DOI: 10.1039/c8ta10779c

Sulfur-Rich Polymers with Functional Linkers for High-Capacity and Fast-Charging Lithium-Sulfur Batteries
journal, October 2018

  • Kang, Haneol; Kim, Hoon; Park, Moon Jeong
  • Advanced Energy Materials, Vol. 8, Issue 32
  • DOI: 10.1002/aenm.201802423

Facile synthesis of Ti 4 O 7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium–sulfur batteries
journal, January 2019

  • Wang, Fang; Ding, Xian; Shi, Ruyue
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta00544g

A Lithium-Sulfur Cell Based on Reversible Lithium Deposition from a Li 2 S Cathode Host onto a Hostless-Anode Substrate
journal, July 2018

  • Nanda, Sanjay; Gupta, Abhay; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201801556

Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium–sulfur batteries: a first-principles study
journal, January 2019

  • Liu, Jiaqin; Li, Mo; Zhang, Xiaofei
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 30
  • DOI: 10.1039/c9cp01036j

The Radical Pathway Based on a Lithium‐Metal‐Compatible High‐Dielectric Electrolyte for Lithium–Sulfur Batteries
journal, December 2018

  • Zhang, Ge; Peng, Hong‐Jie; Zhao, Chen‐Zi
  • Angewandte Chemie, Vol. 130, Issue 51
  • DOI: 10.1002/ange.201810132

Self‐Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium–Sulfur Batteries
journal, April 2019


A compact inorganic layer for robust anode protection in lithium‐sulfur batteries
journal, November 2019

  • Yao, Yu‐Xing; Zhang, Xue‐Qiang; Li, Bo‐Quan
  • InfoMat, Vol. 2, Issue 2
  • DOI: 10.1002/inf2.12046

Polypyrrole-encapsulated amorphous Bi 2 S 3 hollow sphere for long life sodium ion batteries and lithium–sulfur batteries
journal, January 2019

  • Long, Bei; Qiao, Zhengping; Zhang, Jingnan
  • Journal of Materials Chemistry A, Vol. 7, Issue 18
  • DOI: 10.1039/c9ta01358j

Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ
journal, July 2018

  • Pang, Quan; Liang, Xiao; Kochetkov, Ivan R.
  • Angewandte Chemie International Edition, Vol. 57, Issue 31
  • DOI: 10.1002/anie.201805456

Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries
journal, March 2019


In situ formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features
journal, January 2019

  • Zhou, Hongyao; Liu, Haodong; Li, Yejing
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta02341k

Electrokinetic Phenomena Enhanced Lithium‐Ion Transport in Leaky Film for Stable Lithium Metal Anodes
journal, April 2019


Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices
journal, February 2019


Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode
journal, February 2019

  • Chen, Yuqing; Yue, Meng; Liu, Cuilian
  • Advanced Functional Materials, Vol. 29, Issue 15
  • DOI: 10.1002/adfm.201806752

Current Status and Future Prospects of Metal–Sulfur Batteries
journal, May 2019


Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ
journal, July 2018

  • Pang, Quan; Liang, Xiao; Kochetkov, Ivan R.
  • Angewandte Chemie, Vol. 130, Issue 31
  • DOI: 10.1002/ange.201805456

Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices
journal, February 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.