DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: O–O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis

Abstract

In this paper, a deeper mechanistic understanding of the key O–O bond formation step of water oxidation by the [Ru(bda)(L)2] (bdaH2 = 2,2'-bipyridine-6,6'-dicarboxylic acid; L is a pyridine or isoquinoline derivative) family of catalysts is reached through harmonious experimental and computational studies of two series of modified catalysts with systematic variations in the axial ligands. The introduction of halogen and electron-donating substituents in [Ru(bda)(4-X-py)2] and [Ru(bda)(6-X-isq)2] (X is H, Cl, Br, and I for the pyridine series and H, F, Cl, Br, and OMe for the isoquinoline series) enhances the noncovalent interactions between the axial ligands in the transition state for the bimolecular O–O coupling, resulting in a lower activation barrier and faster catalysis. From detailed transition state calculations in combination with experimental kinetic studies, we find that the main contributor to the free energy of activation is entropy due to the highly organized transition states, which is contrary to other reports. Previous work has considered only the electronic influence of the substituents, suggesting electron-withdrawing groups accelerate catalysis, but we show that a balance between polarizability and favorable π–π interactions is the key, leading to rationally devised improvements. Our calculations predict the catalysts with the lowest ΔG for the O–Omore » coupling step to be [Ru(bda)(4-I-py)2] and [Ru(bda)(6,7-(OMe)2-isq)2] for the pyridine and isoquinoline families, respectively. Our experimental results corroborate these predictions: the turnover frequency for [Ru(bda)(4-I-py)2] (330 s–1) is a 10-fold enhancement with respect to that of [Ru(bda)(py)2], and the turnover frequency for [Ru(bda)(6-OMe-isq)2] reaches 1270 s–1, two times faster than [Ru(bda)(isq)2].« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1435374
Alternate Identifier(s):
OSTI ID: 1476288
Report Number(s):
BNL-209120-2018-JAAM
Journal ID: ISSN 0020-1669
Grant/Contract Number:  
SC00112704; SC0012704
Resource Type:
Published Article
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Name: Inorganic Chemistry Journal Volume: 57 Journal Issue: 17; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; water oxidation; ruthenium catalysts; halogen substituents; DFT calculations; stopped-flow kinetics; kinetic/mechanistic studies

Citation Formats

Xie, Yan, Shaffer, David W., and Concepcion, Javier J. O–O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.8b00329.
Xie, Yan, Shaffer, David W., & Concepcion, Javier J. O–O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis. United States. https://doi.org/10.1021/acs.inorgchem.8b00329
Xie, Yan, Shaffer, David W., and Concepcion, Javier J. Mon . "O–O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis". United States. https://doi.org/10.1021/acs.inorgchem.8b00329.
@article{osti_1435374,
title = {O–O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis},
author = {Xie, Yan and Shaffer, David W. and Concepcion, Javier J.},
abstractNote = {In this paper, a deeper mechanistic understanding of the key O–O bond formation step of water oxidation by the [Ru(bda)(L)2] (bdaH2 = 2,2'-bipyridine-6,6'-dicarboxylic acid; L is a pyridine or isoquinoline derivative) family of catalysts is reached through harmonious experimental and computational studies of two series of modified catalysts with systematic variations in the axial ligands. The introduction of halogen and electron-donating substituents in [Ru(bda)(4-X-py)2] and [Ru(bda)(6-X-isq)2] (X is H, Cl, Br, and I for the pyridine series and H, F, Cl, Br, and OMe for the isoquinoline series) enhances the noncovalent interactions between the axial ligands in the transition state for the bimolecular O–O coupling, resulting in a lower activation barrier and faster catalysis. From detailed transition state calculations in combination with experimental kinetic studies, we find that the main contributor to the free energy of activation is entropy due to the highly organized transition states, which is contrary to other reports. Previous work has considered only the electronic influence of the substituents, suggesting electron-withdrawing groups accelerate catalysis, but we show that a balance between polarizability and favorable π–π interactions is the key, leading to rationally devised improvements. Our calculations predict the catalysts with the lowest ΔG‡ for the O–O coupling step to be [Ru(bda)(4-I-py)2] and [Ru(bda)(6,7-(OMe)2-isq)2] for the pyridine and isoquinoline families, respectively. Our experimental results corroborate these predictions: the turnover frequency for [Ru(bda)(4-I-py)2] (330 s–1) is a 10-fold enhancement with respect to that of [Ru(bda)(py)2], and the turnover frequency for [Ru(bda)(6-OMe-isq)2] reaches 1270 s–1, two times faster than [Ru(bda)(isq)2].},
doi = {10.1021/acs.inorgchem.8b00329},
journal = {Inorganic Chemistry},
number = 17,
volume = 57,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.inorgchem.8b00329

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Single-Site, Catalytic Water Oxidation on Oxide Surfaces
journal, November 2009

  • Chen, Zuofeng; Concepcion, Javier J.; Jurss, Jonah W.
  • Journal of the American Chemical Society, Vol. 131, Issue 43, p. 15580-15581
  • DOI: 10.1021/ja906391w

Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O―O bond formation and O2 release
journal, August 2013


Catalytic Water Oxidation by Single-Site Ruthenium Catalysts
journal, February 2010

  • Concepcion, Javier J.; Jurss, Jonah W.; Norris, Michael R.
  • Inorganic Chemistry, Vol. 49, Issue 4, p. 1277-1279
  • DOI: 10.1021/ic901437e

Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes
journal, October 2013


Supramolecular Water Oxidation with Ru-bda-Based Catalysts
journal, November 2014

  • Richmond, Craig J.; Matheu, Roc; Poater, Albert
  • Chemistry - A European Journal, Vol. 20, Issue 52
  • DOI: 10.1002/chem.201405144

Enabling light-driven water oxidation via a low-energy RuIVO intermediate
journal, January 2013

  • Lewandowska-Andralojc, Anna; Polyansky, Dmitry E.; Zong, Ruifa
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 33
  • DOI: 10.1039/c3cp52038b

Toward Controlling Water Oxidation Catalysis: Tunable Activity of Ruthenium Complexes with Axial Imidazole/DMSO Ligands
journal, November 2012

  • Wang, Lei; Duan, Lele; Stewart, Beverly
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja309805m

Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation
journal, October 2014

  • Kärkäs, Markus D.; Verho, Oscar; Johnston, Eric V.
  • Chemical Reviews, Vol. 114, Issue 24
  • DOI: 10.1021/cr400572f

One Site is Enough. Catalytic Water Oxidation by [Ru(tpy)(bpm)(OH 2 )] 2+ and [Ru(tpy)(bpz)(OH 2 )] 2+
journal, December 2008

  • Concepcion, Javier J.; Jurss, Jonah W.; Templeton, Joseph L.
  • Journal of the American Chemical Society, Vol. 130, Issue 49
  • DOI: 10.1021/ja8059649

Mn 4 Ca Cluster in Photosynthesis: Where and How Water is Oxidized to Dioxygen
journal, March 2014

  • Yano, Junko; Yachandra, Vittal
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr4004874

Why Is There a Barrier in the Coupling of Two Radicals in the Water Oxidation Reaction?
journal, November 2016


Mechanism of Water Oxidation by the μ-Oxo Dimer [(bpy) 2 (H 2 O)Ru III ORu III (OH 2 )(bpy) 2 ] 4+
journal, September 2000

  • Binstead, Robert A.; Chronister, Chris W.; Ni, Jinfeng
  • Journal of the American Chemical Society, Vol. 122, Issue 35
  • DOI: 10.1021/ja993235n

Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

Artificial Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation
journal, August 2013

  • Kärkäs, Markus D.; Johnston, Eric V.; Verho, Oscar
  • Accounts of Chemical Research, Vol. 47, Issue 1
  • DOI: 10.1021/ar400076j

Water Oxidation by Ruthenium Complexes Incorporating Multifunctional Bipyridyl Diphosphonate Ligands
journal, May 2016

  • Xie, Yan; Shaffer, David W.; Lewandowska-Andralojc, Anna
  • Angewandte Chemie International Edition, Vol. 55, Issue 28
  • DOI: 10.1002/anie.201601943

Substituent Effects on Physical Properties and Catalytic Activities toward Water Oxidation in Mononuclear Ruthenium Complexes: Water Oxidation in Mononuclear Ruthenium Complexes
journal, November 2015

  • Sato, Yoichi; Takizawa, Shin-ya; Murata, Shigeru
  • European Journal of Inorganic Chemistry, Vol. 2015, Issue 33
  • DOI: 10.1002/ejic.201500958

A New Family of Ru Complexes for Water Oxidation
journal, September 2005

  • Zong, Ruifa; Thummel, Randolph P.
  • Journal of the American Chemical Society, Vol. 127, Issue 37
  • DOI: 10.1021/ja054791m

Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities
journal, June 2013

  • Duan, Lele; Wang, Lei; Inge, A. Ken
  • Inorganic Chemistry, Vol. 52, Issue 14
  • DOI: 10.1021/ic302687d

Catalytic oxidation of water by an oxo-bridged ruthenium dimer
journal, July 1982

  • Gersten, Susan W.; Samuels, George J.; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 104, Issue 14
  • DOI: 10.1021/ja00378a053

Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
journal, February 2010

  • Concepcion, Javier J.; Tsai, Ming-Kang; Muckerman, James T.
  • Journal of the American Chemical Society, Vol. 132, Issue 5, p. 1545-1557
  • DOI: 10.1021/ja904906v

Intramolecular Proton Transfer Boosts Water Oxidation Catalyzed by a Ru Complex
journal, August 2015

  • Matheu, Roc; Ertem, Mehmed Z.; Benet-Buchholz, Jordi
  • Journal of the American Chemical Society, Vol. 137, Issue 33
  • DOI: 10.1021/jacs.5b06541

Structural Modifications of Mononuclear Ruthenium Complexes:  A Combined Experimental and Theoretical Study on the Kinetics of Ruthenium-Catalyzed Water Oxidation
journal, December 2010

  • Tong, Lianpeng; Duan, Lele; Xu, Yunhua
  • Angewandte Chemie International Edition, Vol. 50, Issue 2
  • DOI: 10.1002/anie.201005141

Development of Bioinspired Mn 4 O 4 −Cubane Water Oxidation Catalysts: Lessons from Photosynthesis
journal, December 2009

  • Dismukes, G. Charles; Brimblecombe, Robin; Felton, Greg A. N.
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar900249x

Mechanisms of Water Oxidation Catalyzed by the cis , cis -[(bpy) 2 Ru(OH 2 )] 2 O 4+ Ion
journal, August 2004

  • Yamada, Hiroshi; Siems, William F.; Koike, Tohru
  • Journal of the American Chemical Society, Vol. 126, Issue 31
  • DOI: 10.1021/ja030594g

Chemical and photocatalytic water oxidation by mononuclear Ru catalysts
journal, August 2013


Artificial Photosynthesis for Sustainable Fuel and Chemical Production
journal, January 2015

  • Kim, Dohyung; Sakimoto, Kelsey K.; Hong, Dachao
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201409116

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes
journal, November 2016


Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+
journal, June 1985

  • Gilbert, John A.; Eggleston, Drake S.; Murphy, Wyatt R.
  • Journal of the American Chemical Society, Vol. 107, Issue 13
  • DOI: 10.1021/ja00299a017

Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH] Bridging Ligand as an Intermediate for Catalytic Water Oxidation
journal, August 2009

  • Duan, Lele; Fischer, Andreas; Xu, Yunhua
  • Journal of the American Chemical Society, Vol. 131, Issue 30
  • DOI: 10.1021/ja9034686

Visible Light Driven Water Splitting in a Molecular Device with Unprecedentedly High Photocurrent Density
journal, March 2013

  • Gao, Yan; Ding, Xin; Liu, Jianhui
  • Journal of the American Chemical Society, Vol. 135, Issue 11
  • DOI: 10.1021/ja400402d

Chemical approaches to artificial photosynthesis
journal, May 1989


Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates
journal, September 2011

  • Polyansky, Dmitry E.; Muckerman, James T.; Rochford, Jonathan
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja203249e

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes
journal, January 2014

  • Wang, Lei; Duan, Lele; Wang, Ying
  • Chem. Commun., Vol. 50, Issue 85
  • DOI: 10.1039/C4CC05069J

Highly efficient and robust molecular ruthenium catalysts for water oxidation
journal, July 2012

  • Duan, L.; Araujo, C. M.; Ahlquist, M. S. G.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1118347109

Mechanisms of Water Oxidation from the Blue Dimer to Photosystem II
journal, March 2008

  • Liu, Feng; Concepcion, Javier J.; Jurss, Jonah W.
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701249s

The Ru-tpc Water Oxidation Catalyst and Beyond: Water Nucleophilic Attack Pathway versus Radical Coupling Pathway
journal, March 2017


Molecular Catalysts for Water Oxidation
journal, July 2015