DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors

Abstract

Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describing relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [5]; ORCiD logo [5]; ORCiD logo [5]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xi’an Jiaotong Univ., Shaanxi (China)
  2. Xi’an Jiaotong Univ., Shaanxi (China)
  3. Univ. of New South Wales, Sydney, NSW (Australia)
  4. Simon Fraser Univ., Burnaby, BC (Canada)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Natural Science Foundation (NSF)
OSTI Identifier:
1435239
Grant/Contract Number:  
AC05-00OR22725; N00014-12-1-1045; N00014-16-1-6301; 203773; 51431007; 51321003
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Li, Linglong, Yang, Yaodong, Zhang, Dawei, Ye, Zuo-Guang, Jesse, Stephen, Kalinin, Sergei V., and Vasudevan, Rama K. Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. United States: N. p., 2018. Web. doi:10.1126/sciadv.aap8672.
Li, Linglong, Yang, Yaodong, Zhang, Dawei, Ye, Zuo-Guang, Jesse, Stephen, Kalinin, Sergei V., & Vasudevan, Rama K. Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. United States. https://doi.org/10.1126/sciadv.aap8672
Li, Linglong, Yang, Yaodong, Zhang, Dawei, Ye, Zuo-Guang, Jesse, Stephen, Kalinin, Sergei V., and Vasudevan, Rama K. Fri . "Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors". United States. https://doi.org/10.1126/sciadv.aap8672. https://www.osti.gov/servlets/purl/1435239.
@article{osti_1435239,
title = {Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors},
author = {Li, Linglong and Yang, Yaodong and Zhang, Dawei and Ye, Zuo-Guang and Jesse, Stephen and Kalinin, Sergei V. and Vasudevan, Rama K.},
abstractNote = {Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describing relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.},
doi = {10.1126/sciadv.aap8672},
journal = {Science Advances},
number = 3,
volume = 4,
place = {United States},
year = {Fri Mar 30 00:00:00 EDT 2018},
month = {Fri Mar 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Finite-temperature properties of the relaxor PbMg 1 / 3 Nb 2 / 3 O 3 from atomistic simulations
journal, June 2015


Origin of morphotropic phase boundaries in ferroelectrics
journal, January 2008

  • Ahart, Muhtar; Somayazulu, Maddury; Cohen, R. E.
  • Nature, Vol. 451, Issue 7178
  • DOI: 10.1038/nature06459

Recent progress in relaxor ferroelectrics with perovskite structure
journal, January 2006


Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
journal, November 2015


Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy
journal, February 2009


Parameter Space Compression Underlies Emergent Theories and Predictive Models
journal, October 2013


Thermally activated avalanches: Jamming and the progression of needle domains
journal, March 2011


On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets
journal, September 2014

  • Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06367

Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect
journal, September 1998

  • Zapperi, Stefano; Cizeau, Pierre; Durin, Gianfranco
  • Physical Review B, Vol. 58, Issue 10
  • DOI: 10.1103/PhysRevB.58.6353

Assembly and phase transitions of colloidal crystals
journal, January 2016


Nanoscale Mechanical Softening of Morphotropic BiFeO 3
journal, October 2014

  • Heo, Yooun; Jang, Byong-Kweon; Kim, Seung Jin
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201401958

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
journal, December 2006

  • Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C.
  • Science, Vol. 314, Issue 5806, p. 1757-1761
  • DOI: 10.1126/science.1133734

Nanotwins and phases in high-strain Pb(Mg1/3Nb2/3)1−xTixO3 crystal
journal, April 2008

  • Tu, C. -S.; Hsieh, C. -M.; Chien, R. R.
  • Journal of Applied Physics, Vol. 103, Issue 7
  • DOI: 10.1063/1.2904900

Physical metallurgy of Ti–Ni-based shape memory alloys
journal, July 2005


Strain-induced metal–insulator phase coexistence in perovskite manganites
journal, March 2004


Phase stability after an electric-field poling in Pb ( Mg 1 3 Nb 2 3 ) 1 x Ti x O 3 crystals
journal, December 2004


Electronic liquid-crystal phases of a doped Mott insulator
journal, June 1998

  • Kivelson, S. A.; Fradkin, E.; Emery, V. J.
  • Nature, Vol. 393, Issue 6685
  • DOI: 10.1038/31177

Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging
journal, April 2014


Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics
journal, April 2016

  • Wang, D.; Bokov, A. A.; Ye, Z. -G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11014

Acoustic Detection of Phase Transitions at the Nanoscale
journal, December 2015

  • Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye
  • Advanced Functional Materials, Vol. 26, Issue 4
  • DOI: 10.1002/adfm.201504407

The Higgs mode in disordered superconductors close to a quantum phase transition
journal, January 2015

  • Sherman, Daniel; Pracht, Uwe S.; Gorshunov, Boris
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3227

Detection of Phase Transition via Convolutional Neural Networks
journal, June 2017

  • Tanaka, Akinori; Tomiya, Akio
  • Journal of the Physical Society of Japan, Vol. 86, Issue 6
  • DOI: 10.7566/JPSJ.86.063001

Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces
journal, March 2002


A structural approach to relaxation in glassy liquids
journal, February 2016

  • Schoenholz, S. S.; Cubuk, E. D.; Sussman, D. M.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3644

Mechanical Switching of Nanoscale Multiferroic Phase Boundaries
journal, April 2015

  • Li, Yong-Jun; Wang, Jian-Jun; Ye, Jian-Chao
  • Advanced Functional Materials, Vol. 25, Issue 22
  • DOI: 10.1002/adfm.201500600

Learning phase transitions by confusion
journal, February 2017

  • van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4037

Above-room-temperature ferroelectricity in a single-component molecular crystal
journal, February 2010

  • Horiuchi, Sachio; Tokunaga, Yusuke; Giovannetti, Gianluca
  • Nature, Vol. 463, Issue 7282, p. 789-792
  • DOI: 10.1038/nature08731

Slush-like polar structures in single-crystal relaxors
journal, June 2017

  • Takenaka, Hiroyuki; Grinberg, Ilya; Liu, Shi
  • Nature, Vol. 546, Issue 7658
  • DOI: 10.1038/nature22068

Experimental quantum Hamiltonian learning
journal, March 2017

  • Wang, Jianwei; Paesani, Stefano; Santagati, Raffaele
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4074

New tool in the box
journal, February 2017


Machine learning modeling of superconducting critical temperature
journal, June 2018


Detection of phase transition via convolutional neural network
text, January 2016


Learning phase transitions by confusion
text, January 2016


Machine learning modeling of superconducting critical temperature
text, January 2017


Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
text, January 2006


Nanoscale Mechanical Softening of Morphotropic BiFeO 3
journal, October 2014

  • Heo, Yooun; Jang, Byong-Kweon; Kim, Seung Jin
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201401958

Origin of morphotropic phase boundaries in ferroelectrics
journal, January 2008

  • Ahart, Muhtar; Somayazulu, Maddury; Cohen, R. E.
  • Nature, Vol. 451, Issue 7178
  • DOI: 10.1038/nature06459

Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
journal, November 2015


On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets
journal, September 2014

  • Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06367

Polarization response of crystals with structural and ferroelectric instabilities
journal, October 1993


Betaine arsenate as a system with two instabilities
journal, April 1995


Band Excitation in Scanning Probe Microscopy: Recognition and Functional Imaging
journal, April 2014


Parameter Space Compression Underlies Emergent Theories and Predictive Models
text, January 2013


Detection of phase transition via convolutional neural network
text, January 2016


Machine learning modeling of superconducting critical temperature
dataset, January 2022

  • Stanev, Valentin; Oses, Corey; Kusne, A. Gilad
  • Materials Data Facility
  • DOI: 10.18126/xlfr-hjrn

Works referencing / citing this record:

The Use of Deep Learning to Fast Evaluate Organic Photovoltaic Materials
journal, November 2018


Smart machine learning or discovering meaningful physical and chemical contributions through dimensional stacking
journal, August 2019

  • Griffin, Lee A.; Gaponenko, Iaroslav; Zhang, Shujun
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0222-z

An artificial intelligence atomic force microscope enabled by machine learning
journal, January 2018

  • Huang, Boyuan; Li, Zhenghao; Li, Jiangyu
  • Nanoscale, Vol. 10, Issue 45
  • DOI: 10.1039/c8nr06734a

Machine learning for composite materials
journal, March 2019


Artificial Intelligent Atomic Force Microscope Enabled by Machine Learning
text, January 2018