DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application and Limitations of Nanocasting in Metal–Organic Frameworks

Abstract

Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Finally, some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry
  2. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  4. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  6. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434932
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 5; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; active site stabilization; catalysis; metal-organic frameworks; nanocasting; sol-gel

Citation Formats

Malonzo, Camille D., Wang, Zhao, Duan, Jiaxin, Zhao, Wenyang, Webber, Thomas E., Li, Zhanyong, Kim, In Soo, Kumar, Anurag, Bhan, Aditya, Platero-Prats, Ana E., Chapman, Karena W., Farha, Omar K., Hupp, Joseph T., Martinson, Alex B. F., Penn, R. Lee, and Stein, Andreas. Application and Limitations of Nanocasting in Metal–Organic Frameworks. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.7b03181.
Malonzo, Camille D., Wang, Zhao, Duan, Jiaxin, Zhao, Wenyang, Webber, Thomas E., Li, Zhanyong, Kim, In Soo, Kumar, Anurag, Bhan, Aditya, Platero-Prats, Ana E., Chapman, Karena W., Farha, Omar K., Hupp, Joseph T., Martinson, Alex B. F., Penn, R. Lee, & Stein, Andreas. Application and Limitations of Nanocasting in Metal–Organic Frameworks. United States. https://doi.org/10.1021/acs.inorgchem.7b03181
Malonzo, Camille D., Wang, Zhao, Duan, Jiaxin, Zhao, Wenyang, Webber, Thomas E., Li, Zhanyong, Kim, In Soo, Kumar, Anurag, Bhan, Aditya, Platero-Prats, Ana E., Chapman, Karena W., Farha, Omar K., Hupp, Joseph T., Martinson, Alex B. F., Penn, R. Lee, and Stein, Andreas. Tue . "Application and Limitations of Nanocasting in Metal–Organic Frameworks". United States. https://doi.org/10.1021/acs.inorgchem.7b03181. https://www.osti.gov/servlets/purl/1434932.
@article{osti_1434932,
title = {Application and Limitations of Nanocasting in Metal–Organic Frameworks},
author = {Malonzo, Camille D. and Wang, Zhao and Duan, Jiaxin and Zhao, Wenyang and Webber, Thomas E. and Li, Zhanyong and Kim, In Soo and Kumar, Anurag and Bhan, Aditya and Platero-Prats, Ana E. and Chapman, Karena W. and Farha, Omar K. and Hupp, Joseph T. and Martinson, Alex B. F. and Penn, R. Lee and Stein, Andreas},
abstractNote = {Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Finally, some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.},
doi = {10.1021/acs.inorgchem.7b03181},
journal = {Inorganic Chemistry},
number = 5,
volume = 57,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials
journal, July 2006


Synthesis of replica mesostructures by the nanocasting strategy
journal, January 2005

  • Yang, Haifeng; Zhao, Dongyuan
  • Journal of Materials Chemistry
  • DOI: 10.1039/b414402c

Ordered mesoporous metal oxides: synthesis and applications
journal, January 2012

  • Ren, Yu; Ma, Zhen; Bruce, Peter G.
  • Chemical Society Reviews, Vol. 41, Issue 14
  • DOI: 10.1039/c2cs35086f

Ordered mesoporous non-oxide materials
journal, January 2011

  • Shi, Yifeng; Wan, Ying; Zhao, Dongyuan
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c0cs00186d

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis
journal, December 2012

  • Zhen, Ma; Zhou, Bei; Ren, Yu
  • Frontiers of Environmental Science & Engineering, Vol. 7, Issue 3
  • DOI: 10.1007/s11783-012-0472-1

Synthesis of non-siliceous mesoporous oxides
journal, January 2014


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Application of metal − organic frameworks: Application of metal − organic frameworks
journal, February 2017

  • Pettinari, Claudio; Marchetti, Fabio; Mosca, Nello
  • Polymer International, Vol. 66, Issue 6
  • DOI: 10.1002/pi.5315

Large-Pore Apertures in a Series of Metal-Organic Frameworks
journal, May 2012


Microporous Brookite-Phase Titania Made by Replication of a Metal–Organic Framework
journal, October 2013

  • Hall, Anthony Shoji; Kondo, Atsushi; Maeda, Kazuyuki
  • Journal of the American Chemical Society, Vol. 135, Issue 44
  • DOI: 10.1021/ja4083254

Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film
journal, May 2014

  • Lu, Chunjing; Ben, Teng; Xu, Shixian
  • Angewandte Chemie International Edition, Vol. 53, Issue 25, p. 6454-6458
  • DOI: 10.1002/anie.201402950

Functional materials derived from open framework templates/precursors: synthesis and applications
journal, January 2014

  • Sun, Jian-Ke; Xu, Qiang
  • Energy & Environmental Science, Vol. 7, Issue 7
  • DOI: 10.1039/c4ee00517a

Metal–organic frameworks as catalysts: the role of metal active sites
journal, January 2013

  • Valvekens, Pieterjan; Vermoortele, Frederik; De Vos, Dirk
  • Catalysis Science & Technology, Vol. 3, Issue 6
  • DOI: 10.1039/c3cy20813c

Single-atom active sites on metal-organic frameworks
journal, March 2012

  • Ranocchiari, Marco; Lothschütz, Christian; Grolimund, Daniel
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 468, Issue 2143
  • DOI: 10.1098/rspa.2012.0078

Metal–organic and covalent organic frameworks as single-site catalysts
journal, January 2017

  • Rogge, S. M. J.; Bavykina, A.; Hajek, J.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00033B

Engineering Metal Organic Frameworks for Heterogeneous Catalysis
journal, August 2010

  • Corma, A.; García, H.; Llabrés i Xamena, F. X.
  • Chemical Reviews, Vol. 110, Issue 8, p. 4606-4655
  • DOI: 10.1021/cr9003924

Metal-Organic Frameworks: Opportunities for Catalysis
journal, September 2009

  • Farrusseng, David; Aguado, Sonia; Pinel, Catherine
  • Angewandte Chemie International Edition, Vol. 48, Issue 41
  • DOI: 10.1002/anie.200806063

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Incorporation of Molecular Catalysts in Metal-Organic Frameworks for Highly Efficient Heterogeneous Catalysis
journal, March 2017


Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000
journal, December 2015

  • Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo
  • Nature Protocols, Vol. 11, Issue 1
  • DOI: 10.1038/nprot.2016.001

Post-synthetic metalation of metal–organic frameworks
journal, January 2014

  • Evans, Jack D.; Sumby, Christopher J.; Doonan, Christian J.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00076E

Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting
journal, February 2016

  • Malonzo, Camille D.; Shaker, Sammy M.; Ren, Limin
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b12688

Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity
journal, January 2015

  • Lammert, Martin; Wharmby, Michael T.; Smolders, Simon
  • Chemical Communications, Vol. 51, Issue 63
  • DOI: 10.1039/C5CC02606G

Synthesis and Characterization of New Ce(IV)-MOFs Exhibiting Various Framework Topologies
journal, January 2017

  • Lammert, Martin; Glißmann, Christian; Reinsch, Helge
  • Crystal Growth & Design, Vol. 17, Issue 3
  • DOI: 10.1021/acs.cgd.6b01512

Nickel-based solid catalysts for ethylene oligomerization – a review
journal, January 2014

  • Finiels, Annie; Fajula, François; Hulea, Vasile
  • Catal. Sci. Technol., Vol. 4, Issue 8
  • DOI: 10.1039/C4CY00305E

Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
journal, February 2016

  • Li, Zhanyong; Schweitzer, Neil M.; League, Aaron B.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12515

Isobutane dehydrogenation over sulfided nickel catalysts
journal, March 1994


Nickel-based Enzyme Systems
journal, April 2009


Supported indium oxide as novel efficient catalysts for dehydrogenation of propane with carbon dioxide
journal, April 2010


Indium and gallium containing ZSM-5 zeolites: acidity and catalytic activity in propane transformation
journal, December 1996


Low-Oxidation State Indium-Catalyzed C–C Bond Formation
journal, May 2012

  • Schneider, Uwe; Kobayashi, ShU̅
  • Accounts of Chemical Research, Vol. 45, Issue 8
  • DOI: 10.1021/ar300008t

Sustainable selective oxidations using ceria-based materials
journal, January 2010

  • Beckers, Jurriaan; Rothenberg, Gadi
  • Green Chemistry, Vol. 12, Issue 6
  • DOI: 10.1039/c000191k

A facile synthesis of UiO-66, UiO-67 and their derivatives
journal, January 2013

  • Katz, Michael J.; Brown, Zachary J.; Colón, Yamil J.
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc46105j

Rapid Room-Temperature Synthesis of Metal-Organic Framework HKUST-1 Crystals in Bulk and as Oriented and Patterned Thin Films
journal, March 2011

  • Zhuang, Jin-Liang; Ceglarek, Doris; Pethuraj, Sangeetha
  • Advanced Functional Materials, Vol. 21, Issue 8
  • DOI: 10.1002/adfm.201002529

Generation and applications of structure envelopes for porous metal–organic frameworks
journal, February 2013

  • Yakovenko, Andrey A.; Reibenspies, Joseph H.; Bhuvanesh, Nattamai
  • Journal of Applied Crystallography, Vol. 46, Issue 2
  • DOI: 10.1107/S0021889812050935

Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density
journal, October 2014

  • Yakovenko, Andrey A.; Wei, Zhangwen; Wriedt, Mario
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg500525g

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts
journal, February 2009

  • Jiao, Feng; Frei, Heinz
  • Angewandte Chemie International Edition, Vol. 48, Issue 10
  • DOI: 10.1002/anie.200805534

Destruction of chemical warfare agents using metal–organic frameworks
journal, March 2015

  • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4238

Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000
journal, June 2017

  • Yabushita, Mizuho; Li, Peng; Islamoglu, Timur
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 25
  • DOI: 10.1021/acs.iecr.7b01164

MOFs and their grafted analogues: regioselective epoxide ring-opening with Zr 6 nodes
journal, January 2016

  • Thornburg, Nicholas E.; Liu, Yangyang; Li, Peng
  • Catalysis Science & Technology, Vol. 6, Issue 17
  • DOI: 10.1039/C6CY01093H

Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides
journal, August 2014

  • Sattler, Jesper J. H. B.; Ruiz-Martinez, Javier; Santillan-Jimenez, Eduardo
  • Chemical Reviews, Vol. 114, Issue 20
  • DOI: 10.1021/cr5002436

A Highly Porous Metal-Organic Framework with Open Nickel Sites
journal, September 2010

  • Gedrich, Kristina; Senkovska, Irena; Klein, Nicole
  • Angewandte Chemie International Edition, Vol. 49, Issue 45
  • DOI: 10.1002/anie.201001735

Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks
journal, September 2016


Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization
journal, October 2016

  • Bernales, Varinia; League, Aaron B.; Li, Zhanyong
  • The Journal of Physical Chemistry C, Vol. 120, Issue 41
  • DOI: 10.1021/acs.jpcc.6b07362

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


A Precise and Scalable Post-Modification of Mesoporous Metal-Organic Framework NU-1000 Via Atomic Layer Deposition
journal, August 2016


Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene
journal, June 2014

  • Nguyen, Huong Giang T.; Schweitzer, Neil M.; Chang, Chih-Yi
  • ACS Catalysis, Vol. 4, Issue 8, p. 2496-2500
  • DOI: 10.1021/cs5001448

Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support
journal, September 2016


Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes
journal, June 2015

  • Yang, Dong; Odoh, Samuel O.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23, p. 7391-7396
  • DOI: 10.1021/jacs.5b02956

Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes
journal, August 2016

  • Manna, Kuntal; Ji, Pengfei; Lin, Zekai
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12610

Works referencing / citing this record:

Casting Nanoporous Platinum in Metal–Organic Frameworks
journal, January 2019

  • Gao, Xiang; Pei, Xiaokun; Gardner, David W.
  • Advanced Materials, Vol. 31, Issue 12
  • DOI: 10.1002/adma.201807553