skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Application and Limitations of Nanocasting in Metal–Organic Frameworks

Abstract

Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Finally, some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry
  2. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  4. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  6. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434932
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 5; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; active site stabilization; catalysis; metal-organic frameworks; nanocasting; sol-gel

Citation Formats

Malonzo, Camille D., Wang, Zhao, Duan, Jiaxin, Zhao, Wenyang, Webber, Thomas E., Li, Zhanyong, Kim, In Soo, Kumar, Anurag, Bhan, Aditya, Platero-Prats, Ana E., Chapman, Karena W., Farha, Omar K., Hupp, Joseph T., Martinson, Alex B. F., Penn, R. Lee, and Stein, Andreas. Application and Limitations of Nanocasting in Metal–Organic Frameworks. United States: N. p., 2018. Web. https://doi.org/10.1021/acs.inorgchem.7b03181.
Malonzo, Camille D., Wang, Zhao, Duan, Jiaxin, Zhao, Wenyang, Webber, Thomas E., Li, Zhanyong, Kim, In Soo, Kumar, Anurag, Bhan, Aditya, Platero-Prats, Ana E., Chapman, Karena W., Farha, Omar K., Hupp, Joseph T., Martinson, Alex B. F., Penn, R. Lee, & Stein, Andreas. Application and Limitations of Nanocasting in Metal–Organic Frameworks. United States. https://doi.org/10.1021/acs.inorgchem.7b03181
Malonzo, Camille D., Wang, Zhao, Duan, Jiaxin, Zhao, Wenyang, Webber, Thomas E., Li, Zhanyong, Kim, In Soo, Kumar, Anurag, Bhan, Aditya, Platero-Prats, Ana E., Chapman, Karena W., Farha, Omar K., Hupp, Joseph T., Martinson, Alex B. F., Penn, R. Lee, and Stein, Andreas. Tue . "Application and Limitations of Nanocasting in Metal–Organic Frameworks". United States. https://doi.org/10.1021/acs.inorgchem.7b03181. https://www.osti.gov/servlets/purl/1434932.
@article{osti_1434932,
title = {Application and Limitations of Nanocasting in Metal–Organic Frameworks},
author = {Malonzo, Camille D. and Wang, Zhao and Duan, Jiaxin and Zhao, Wenyang and Webber, Thomas E. and Li, Zhanyong and Kim, In Soo and Kumar, Anurag and Bhan, Aditya and Platero-Prats, Ana E. and Chapman, Karena W. and Farha, Omar K. and Hupp, Joseph T. and Martinson, Alex B. F. and Penn, R. Lee and Stein, Andreas},
abstractNote = {Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Finally, some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.},
doi = {10.1021/acs.inorgchem.7b03181},
journal = {Inorganic Chemistry},
number = 5,
volume = 57,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis
journal, December 2012

  • Zhen, Ma; Zhou, Bei; Ren, Yu
  • Frontiers of Environmental Science & Engineering, Vol. 7, Issue 3
  • DOI: 10.1007/s11783-012-0472-1

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Large-Pore Apertures in a Series of Metal-Organic Frameworks
journal, May 2012


Functional materials derived from open framework templates/precursors: synthesis and applications
journal, January 2014

  • Sun, Jian-Ke; Xu, Qiang
  • Energy & Environmental Science, Vol. 7, Issue 7
  • DOI: 10.1039/c4ee00517a

Engineering Metal Organic Frameworks for Heterogeneous Catalysis
journal, August 2010

  • Corma, A.; García, H.; Llabrés i Xamena, F. X.
  • Chemical Reviews, Vol. 110, Issue 8, p. 4606-4655
  • DOI: 10.1021/cr9003924

Metal-Organic Frameworks: Opportunities for Catalysis
journal, September 2009

  • Farrusseng, David; Aguado, Sonia; Pinel, Catherine
  • Angewandte Chemie International Edition, Vol. 48, Issue 41
  • DOI: 10.1002/anie.200806063

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000
journal, December 2015

  • Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo
  • Nature Protocols, Vol. 11, Issue 1
  • DOI: 10.1038/nprot.2016.001

Post-synthetic metalation of metal–organic frameworks
journal, January 2014

  • Evans, Jack D.; Sumby, Christopher J.; Doonan, Christian J.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00076E

Nickel-based solid catalysts for ethylene oligomerization – a review
journal, January 2014

  • Finiels, Annie; Fajula, François; Hulea, Vasile
  • Catal. Sci. Technol., Vol. 4, Issue 8
  • DOI: 10.1039/C4CY00305E

Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
journal, February 2016

  • Li, Zhanyong; Schweitzer, Neil M.; League, Aaron B.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12515

Low-Oxidation State Indium-Catalyzed C–C Bond Formation
journal, May 2012

  • Schneider, Uwe; Kobayashi, ShU̅
  • Accounts of Chemical Research, Vol. 45, Issue 8
  • DOI: 10.1021/ar300008t

A facile synthesis of UiO-66, UiO-67 and their derivatives
journal, January 2013

  • Katz, Michael J.; Brown, Zachary J.; Colón, Yamil J.
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc46105j

Study of Guest Molecules in Metal–Organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density
journal, October 2014

  • Yakovenko, Andrey A.; Wei, Zhangwen; Wriedt, Mario
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg500525g

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts
journal, February 2009

  • Jiao, Feng; Frei, Heinz
  • Angewandte Chemie International Edition, Vol. 48, Issue 10
  • DOI: 10.1002/anie.200805534

Destruction of chemical warfare agents using metal–organic frameworks
journal, March 2015

  • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4238

Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization
journal, October 2016

  • Bernales, Varinia; League, Aaron B.; Li, Zhanyong
  • The Journal of Physical Chemistry C, Vol. 120, Issue 41
  • DOI: 10.1021/acs.jpcc.6b07362

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene
journal, June 2014

  • Nguyen, Huong Giang T.; Schweitzer, Neil M.; Chang, Chih-Yi
  • ACS Catalysis, Vol. 4, Issue 8, p. 2496-2500
  • DOI: 10.1021/cs5001448

Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes
journal, June 2015

  • Yang, Dong; Odoh, Samuel O.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23, p. 7391-7396
  • DOI: 10.1021/jacs.5b02956

    Works referencing / citing this record:

    Casting Nanoporous Platinum in Metal–Organic Frameworks
    journal, January 2019

    • Gao, Xiang; Pei, Xiaokun; Gardner, David W.
    • Advanced Materials, Vol. 31, Issue 12
    • DOI: 10.1002/adma.201807553