DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. Sandia National Laboratories Albuquerque NM 87111 USA
  2. Department of Chemistry San Jose State University San Jose CA 95192 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1434808
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 130 Journal Issue: 26; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Bleier, Grant C., Watt, John, Simocko, Chester K., Lavin, Judith M., and Huber, Dale L. Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size. Germany: N. p., 2018. Web. doi:10.1002/ange.201800959.
Bleier, Grant C., Watt, John, Simocko, Chester K., Lavin, Judith M., & Huber, Dale L. Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size. Germany. https://doi.org/10.1002/ange.201800959
Bleier, Grant C., Watt, John, Simocko, Chester K., Lavin, Judith M., and Huber, Dale L. Thu . "Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size". Germany. https://doi.org/10.1002/ange.201800959.
@article{osti_1434808,
title = {Reversible Magnetic Agglomeration: A Mechanism for Thermodynamic Control over Nanoparticle Size},
author = {Bleier, Grant C. and Watt, John and Simocko, Chester K. and Lavin, Judith M. and Huber, Dale L.},
abstractNote = {},
doi = {10.1002/ange.201800959},
journal = {Angewandte Chemie},
number = 26,
volume = 130,
place = {Germany},
year = {2018},
month = {4}
}

Works referenced in this record:

Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles
journal, April 2013

  • Monson, Todd C.; Venturini, Eugene L.; Petkov, Valeri
  • Journal of Magnetism and Magnetic Materials, Vol. 331
  • DOI: 10.1016/j.jmmm.2012.11.026

One-step preparation of amorphous iron nanoparticles by laser ablation
journal, January 2012


Giant magnetic susceptibility enhancement in field-structured nanocomposites
journal, September 2008

  • Martin, James E.; Venturini, E. L.; Huber, D. L.
  • Journal of Magnetism and Magnetic Materials, Vol. 320, Issue 18
  • DOI: 10.1016/j.jmmm.2008.04.111

3-Substituted-2,4-pentanedionates: ligands for photoactive supramolecular assemblies
journal, January 2011

  • Olivier, Jean-Hubert; Harrowfield, Jack; Ziessel, Raymond
  • Chemical Communications, Vol. 47, Issue 40
  • DOI: 10.1039/c1cc12771c

Stable Single-Crystalline Body Centered Cubic Fe Nanoparticles
journal, April 2011

  • Lacroix, Lise-Marie; Frey Huls, Natalie; Ho, Don
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200110t

Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron
journal, June 2000

  • Ponder, Sherman M.; Darab, John G.; Mallouk, Thomas E.
  • Environmental Science & Technology, Vol. 34, Issue 12
  • DOI: 10.1021/es9911420

Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging
journal, April 2011

  • Cheong, Soshan; Ferguson, Peter; Feindel, Kirk W.
  • Angewandte Chemie International Edition, Vol. 50, Issue 18
  • DOI: 10.1002/anie.201100562

A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation
journal, September 2007

  • Shokouhimehr, Mohammadreza; Piao, Yuanzhe; Kim, Jaeyun
  • Angewandte Chemie International Edition, Vol. 46, Issue 37
  • DOI: 10.1002/anie.200702386

Surface Chemistry and Electrochemistry of Supported Zerovalent Iron Nanoparticles in the Remediation of Aqueous Metal Contaminants
journal, February 2001

  • Ponder, Sherman M.; Darab, John G.; Bucher, Jerome
  • Chemistry of Materials, Vol. 13, Issue 2
  • DOI: 10.1021/cm000288r

Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology
journal, December 2008

  • Cheon, Jinwoo; Lee, Jae-Hyun
  • Accounts of Chemical Research, Vol. 41, Issue 12, p. 1630-1640
  • DOI: 10.1021/ar800045c

Enhanced Nanoparticle Size Control by Extending LaMer’s Mechanism
journal, August 2015


Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents
journal, November 2010

  • Amendola, Vincenzo; Riello, Pietro; Meneghetti, Moreno
  • The Journal of Physical Chemistry C, Vol. 115, Issue 12
  • DOI: 10.1021/jp109371m

Shape Control from Thermodynamic Growth Conditions: The Case of hcp Ruthenium Hourglass Nanocrystals
journal, December 2012

  • Watt, John; Yu, Chenlong; Chang, Shery L. Y.
  • Journal of the American Chemical Society, Vol. 135, Issue 2
  • DOI: 10.1021/ja311366k

Synthesis of highly magnetic iron nanoparticles suitable for field structuring using a β-diketone surfactant
journal, July 2004

  • Huber, Dale L.; Venturini, Eugene L.; Martin, James E.
  • Journal of Magnetism and Magnetic Materials, Vol. 278, Issue 3
  • DOI: 10.1016/j.jmmm.2003.12.1317

Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application
journal, February 2007

  • Lu, An-Hui; Salabas, E. L.; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 46, Issue 8
  • DOI: 10.1002/anie.200602866

Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung
journal, February 2007

  • Lu, An-Hui; Salabas, Elena Lorena; Schüth, Ferdi
  • Angewandte Chemie, Vol. 119, Issue 8
  • DOI: 10.1002/ange.200602866

Simple Synthesis and Functionalization of Iron Nanoparticles for Magnetic Resonance Imaging
journal, April 2011

  • Cheong, Soshan; Ferguson, Peter; Feindel, Kirk W.
  • Angewandte Chemie, Vol. 123, Issue 18
  • DOI: 10.1002/ange.201100562

Tuning the Magnetic Properties of Nanoparticles
journal, July 2013

  • Kolhatkar, Arati; Jamison, Andrew; Litvinov, Dmitri
  • International Journal of Molecular Sciences, Vol. 14, Issue 8
  • DOI: 10.3390/ijms140815977

Implication of Ligand Choice on Surface Properties, Crystal Structure, and Magnetic Properties of Iron Nanoparticles
journal, February 2013

  • Monson, Todd C.; Ma, Qing; Stevens, Tyler E.
  • Particle & Particle Systems Characterization, Vol. 30, Issue 3
  • DOI: 10.1002/ppsc.201200055

Synthesis, Properties, and Applications of Iron Nanoparticles
journal, May 2005


Theory, Production and Mechanism of Formation of Monodispersed Hydrosols
journal, November 1950

  • LaMer, Victor K.; Dinegar, Robert H.
  • Journal of the American Chemical Society, Vol. 72, Issue 11
  • DOI: 10.1021/ja01167a001

A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation
journal, September 2007

  • Shokouhimehr, Mohammadreza; Piao, Yuanzhe; Kim, Jaeyun
  • Angewandte Chemie, Vol. 119, Issue 37
  • DOI: 10.1002/ange.200702386

Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl
journal, June 1980

  • Smith, Thomas W.; Wychick, Darlene
  • The Journal of Physical Chemistry, Vol. 84, Issue 12
  • DOI: 10.1021/j100449a037

Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products
journal, June 2015

  • Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04641

Non-volatile iron carbonyls as versatile precursors for the synthesis of iron-containing nanoparticles
journal, January 2017

  • Watt, John; Bleier, Grant C.; Austin, Mariah J.
  • Nanoscale, Vol. 9, Issue 20
  • DOI: 10.1039/C7NR01028A