skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation

Abstract

MnO2 materials are considered promising cathode materials for rechargeable lithium, sodium, and magnesi-um batteries due to their earth abundance and environmental friendliness. One polymorph of MnO2, α-MnO2, has 2×2 tunnels (4.6 Å × 4.6 Å) in its structural framework, which provide facile diffusion pathways for guest ions. In this work, a silver ion containing α-MnO2 (Ag1.2Mn8O16) is examined as a candidate cathode material for Li based batteries. Electro-chemical stability of Ag1.2Mn8O16 is investigated through Coulombically controlled reduction under 2 or 4 molar electron equivalents (e.e.). Terminal discharge voltage remains almost constant under 2 e.e. of cycling, whereas it continuously decreases under repetitive reduction by 4 e.e. Thus, detailed structural analyses were utilized to investigate the structural evolution upon lithiation. Significant increases in lattice a (17.7 %) and atomic distances (~4.8 %) are observed when x in LixAg1.2Mn8O16 is >4. Ag metal forms at this level of lithiation concomitant with a large structural distortion to the Mn-O framework. In contrast, lattice a only expands by 2.2 % and Mn-O/Mn-Mn distances show minor changes (~1.4 %) at x <2. The structural deformation (tunnel breakage) at x >4 inhibits the recovery of the original structure, leading to poor cycle stability at high lithiationmore » levels. This report establishes the correlation among local structure changes, amorphization processes, formation of Ag0 and long term cycle stability for this silver containing α-MnO2 type material at both low and high lithiation levels.« less

Authors:
ORCiD logo [1];  [2];  [1];  [2];  [2]; ORCiD logo [3]; ORCiD logo [1];  [1]
  1. Stony Brook Univ., Stony Brook, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2mt); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434772
Report Number(s):
BNL-203551-2018-JAAM
Journal ID: ISSN 0897-4756; TRN: US1802821
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 2; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Huang, Jianping, Hu, Xiaobing, Brady, Alexander B., Wu, Lijun, Zhu, Yimei, Takeuchi, Esther S., Marschilok, Amy C., and Takeuchi, Kenneth J. Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation. United States: N. p., 2017. Web. https://doi.org/10.1021/acs.chemmater.7b03599.
Huang, Jianping, Hu, Xiaobing, Brady, Alexander B., Wu, Lijun, Zhu, Yimei, Takeuchi, Esther S., Marschilok, Amy C., & Takeuchi, Kenneth J. Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation. United States. https://doi.org/10.1021/acs.chemmater.7b03599
Huang, Jianping, Hu, Xiaobing, Brady, Alexander B., Wu, Lijun, Zhu, Yimei, Takeuchi, Esther S., Marschilok, Amy C., and Takeuchi, Kenneth J. Sun . "Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation". United States. https://doi.org/10.1021/acs.chemmater.7b03599. https://www.osti.gov/servlets/purl/1434772.
@article{osti_1434772,
title = {Unveiling the Structural Evolution of Ag1.2Mn8O16 under Coulombically Controlled (De)Lithiation},
author = {Huang, Jianping and Hu, Xiaobing and Brady, Alexander B. and Wu, Lijun and Zhu, Yimei and Takeuchi, Esther S. and Marschilok, Amy C. and Takeuchi, Kenneth J.},
abstractNote = {MnO2 materials are considered promising cathode materials for rechargeable lithium, sodium, and magnesi-um batteries due to their earth abundance and environmental friendliness. One polymorph of MnO2, α-MnO2, has 2×2 tunnels (4.6 Å × 4.6 Å) in its structural framework, which provide facile diffusion pathways for guest ions. In this work, a silver ion containing α-MnO2 (Ag1.2Mn8O16) is examined as a candidate cathode material for Li based batteries. Electro-chemical stability of Ag1.2Mn8O16 is investigated through Coulombically controlled reduction under 2 or 4 molar electron equivalents (e.e.). Terminal discharge voltage remains almost constant under 2 e.e. of cycling, whereas it continuously decreases under repetitive reduction by 4 e.e. Thus, detailed structural analyses were utilized to investigate the structural evolution upon lithiation. Significant increases in lattice a (17.7 %) and atomic distances (~4.8 %) are observed when x in LixAg1.2Mn8O16 is >4. Ag metal forms at this level of lithiation concomitant with a large structural distortion to the Mn-O framework. In contrast, lattice a only expands by 2.2 % and Mn-O/Mn-Mn distances show minor changes (~1.4 %) at x <2. The structural deformation (tunnel breakage) at x >4 inhibits the recovery of the original structure, leading to poor cycle stability at high lithiation levels. This report establishes the correlation among local structure changes, amorphization processes, formation of Ag0 and long term cycle stability for this silver containing α-MnO2 type material at both low and high lithiation levels.},
doi = {10.1021/acs.chemmater.7b03599},
journal = {Chemistry of Materials},
number = 2,
volume = 30,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system
journal, August 1994


Design and Preparation of Materials for Advanced Electrochemical Storage
journal, June 2012

  • Melot, Brent C.; Tarascon, J. -M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300088q

Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Electrochemical extraction of lithium from LiMn2O4
journal, February 1984


Optimized LiFePO[sub 4] for Lithium Battery Cathodes
journal, January 2001

  • Yamada, A.; Chung, S. C.; Hinokuma, K.
  • Journal of The Electrochemical Society, Vol. 148, Issue 3
  • DOI: 10.1149/1.1348257

The Spinel Phase of LiMn[sub 2]O[sub 4] as a Cathode in Secondary Lithium Cells
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085330

Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material
journal, February 2005


Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes
journal, November 2008

  • Kim, Do Kyung; Muralidharan, P.; Lee, Hyun-Wook
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl8024328

Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011

  • Malik, Rahul; Zhou, Fei; Ceder, G.
  • Nature Materials, Vol. 10, Issue 8
  • DOI: 10.1038/nmat3065

Microstructural Features of α-MnO[sub 2] Electrodes for Lithium Batteries
journal, January 1998

  • Shao-Horn, Y.
  • Journal of The Electrochemical Society, Vol. 145, Issue 2
  • DOI: 10.1149/1.1838307

Structural and electrochemical studies of α-manganese dioxide (α-MnO2)
journal, October 1997


Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries
journal, January 2013

  • Su, Dawei; Ahn, Hyo-Jun; Wang, Guoxiu
  • Journal of Materials Chemistry A, Vol. 1, Issue 15
  • DOI: 10.1039/c3ta00031a

α-MnO2 as a cathode material for rechargeable Mg batteries
journal, September 2012


M x Mn 8 O 16 (M = Ag or K) as promising cathode materials for secondary Mg based batteries: the role of the cation M
journal, January 2016

  • Huang, Jianping; Poyraz, Altug S.; Takeuchi, Kenneth J.
  • Chemical Communications, Vol. 52, Issue 21
  • DOI: 10.1039/C6CC00025H

Silver-Containing α-MnO 2 Nanorods: Electrochemistry in Na-Based Battery Systems
journal, September 2016

  • Huang, Jianping; Poyraz, Altug S.; Lee, Seung-Yong
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 5
  • DOI: 10.1021/acsami.6b08549

α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries
journal, June 2008

  • Débart, Aurélie; Paterson, Allan J.; Bao, Jianli
  • Angewandte Chemie, Vol. 120, Issue 24
  • DOI: 10.1002/ange.200705648

Morphological and Crystalline Evolution of Nanostructured MnO 2 and Its Application in Lithium–Air Batteries
journal, August 2012

  • Truong, Tu T.; Liu, Yuzi; Ren, Yang
  • ACS Nano, Vol. 6, Issue 9
  • DOI: 10.1021/nn302654p

Graphene Oxide−MnO 2 Nanocomposites for Supercapacitors
journal, March 2010

  • Chen, Sheng; Zhu, Junwu; Wu, Xiaodong
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn901311t

Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials
journal, January 2008

  • Suib, Steven L.
  • Journal of Materials Chemistry, Vol. 18, Issue 14
  • DOI: 10.1039/b714966m

Porous Manganese Oxide Octahedral Molecular Sieves and Octahedral Layered Materials
journal, April 2008

  • Suib, Steven L.
  • Accounts of Chemical Research, Vol. 41, Issue 4
  • DOI: 10.1021/ar7001667

Ammonia- and lithia-doped manganese dioxide for 3 V lithium batteries
journal, July 2001


The structure of K 1.33 Mn 8 O 16 and cation ordering in hollandite-type structures
journal, April 1986

  • Vicat, J.; Fanchon, E.; Strobel, P.
  • Acta Crystallographica Section B Structural Science, Vol. 42, Issue 2
  • DOI: 10.1107/S0108768186098415

Topotactic Reduction of Alpha-Manganese (Di)Oxide in Nonaqueous Lithium Cells
journal, January 1991

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 138, Issue 2
  • DOI: 10.1149/1.2085589

K 0.25 Mn 2 O 4 nanofiber microclusters as high power cathode materials for rechargeable lithium batteries
journal, January 2012

  • Zhang, Chaofeng; Feng, Chuanqi; Zhang, Peng
  • RSC Adv., Vol. 2, Issue 4
  • DOI: 10.1039/C1RA00510C

Evidence of Solid-Solution Reaction upon Lithium Insertion into Cryptomelane K 0.25 Mn 2 O 4 Material
journal, February 2014

  • Pang, Wei Kong; Peterson, Vanessa K.; Sharma, Neeraj
  • The Journal of Physical Chemistry C, Vol. 118, Issue 8
  • DOI: 10.1021/jp411687n

The influence of large cations on the electrochemical properties of tunnel-structured metal oxides
journal, November 2016

  • Yuan, Yifei; Zhan, Chun; He, Kun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13374

Synthesis of cryptomelane type α-MnO 2 (K x Mn 8 O 16 ) cathode materials with tunable K + content: the role of tunnel cation concentration on electrochemistry
journal, January 2017

  • Poyraz, Altug S.; Huang, Jianping; Pelliccione, Christopher J.
  • Journal of Materials Chemistry A, Vol. 5, Issue 32
  • DOI: 10.1039/C7TA03476H

Synthetic Control of Composition and Crystallite Size of Silver Hollandite, Ag x Mn 8 O 16 : Impact on Electrochemistry
journal, September 2012

  • Takeuchi, Kenneth J.; Yau, Shali Z.; Menard, Melissa C.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 10
  • DOI: 10.1021/am301443g

Structural Defects of Silver Hollandite, Ag x Mn 8 O y , Nanorods: Dramatic Impact on Electrochemistry
journal, July 2015


Capture Lithium in αMnO 2 : Insights from First Principles
journal, October 2012

  • Ling, Chen; Mizuno, Fuminori
  • Chemistry of Materials, Vol. 24, Issue 20
  • DOI: 10.1021/cm302347j

In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of α-MnO 2 electrodes in Li–O 2 and Li-ion coin cells
journal, January 2015

  • Yang, Zhenzhen; Trahey, Lynn; Ren, Yang
  • Journal of Materials Chemistry A, Vol. 3, Issue 14
  • DOI: 10.1039/C4TA06633B

Electrochemistry of Hollandite α-MnO 2 : Li-Ion and Na-Ion Insertion and Li 2 O Incorporation
journal, June 2013

  • Tompsett, David A.; Islam, M. Saiful
  • Chemistry of Materials, Vol. 25, Issue 12
  • DOI: 10.1021/cm400864n

Asynchronous Crystal Cell Expansion during Lithiation of K + -Stabilized α-MnO 2
journal, April 2015

  • Yuan, Yifei; Nie, Anmin; Odegard, Gregory M.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5048913

Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries
journal, September 2016


Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell
journal, January 1990

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 137, Issue 3
  • DOI: 10.1149/1.2086552

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


ATHENA and ARTEMIS Interactive Graphical Data Analysisusing IFEFFIT
journal, January 2005


White lines and d -electron occupancies for the 3 d and 4 d transition metals
journal, April 1993


Atomic-resolution imaging of oxidation states in manganites
journal, February 2009


    Works referencing / citing this record:

    Capacity Retention for (De)lithiation of Silver Containing α-MnO 2 : Impact of Structural Distortion and Transition Metal Dissolution
    journal, January 2018

    • Huang, Jianping; Housel, Lisa M.; Quilty, Calvin D.
    • Journal of The Electrochemical Society, Vol. 165, Issue 11
    • DOI: 10.1149/2.0371811jes

    Review of the Stability/Capacity Trade-off in Silver Hollandite Lithium Battery Cathodes
    journal, January 2018

    • Smith, Paul F.; Lutz, Diana M.; Takeuchi, Esther S.
    • MRS Advances, Vol. 3, Issue 14
    • DOI: 10.1557/adv.2018.306

    Defect Control in the Synthesis of 2 D MoS 2 Nanosheets: Polysulfide Trapping in Composite Sulfur Cathodes for Li–S Batteries
    journal, March 2020