DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlating Transport and Structural Properties in Li 1+xAlxGe2–x(PO 4)3 (LAGP) Prepared from Aqueous Solution

Abstract

Li1+xAlxGe2–x(PO4)3 (LAGP) is a solid lithium-ion conductor belonging to the NASICON family, representing the solid solution of LiGe2(PO4)3 and AlPO4. The typical syntheses of LAGP either involve high-temperature melt-quenching, which is complicated and expensive, or a sol–gel process requiring costly organic germanium precursors. Herein, we report a simple method based on aqueous solutions without the need of ethoxide precursors. Using synchrotron and neutron diffraction, the crystal structure, the occupancies for Al and Ge, and the distribution of lithium were determined. Substitution of germanium by aluminum allows for an increased Li+ incorporation in the material and the actual Li+ content in the sample increases with the nominal Li+ content and a solubility limit is observed for higher aluminum content. By means of impedance spectroscopy, an increase in the ionic conductivity with increasing lithium content is observed. Whereas the lithium ionic conductivity improves, due to the increasing carrier density, the bulk activation energy increases. This correlation suggests that changes in the transport mechanism and correlated motion may be at play in the Li1+xAlxGe2–x(PO4)3 solid solution.

Authors:
 [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Justus-Liebig-Univ., Gießen (Germany)
  2. Technische Univ. Munchen, Garching (Germany)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
BASF SE; International Network for Electrochemistry and Batteries; Justus-Liebig-University Giessen; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434719
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 10; Journal Issue: 13; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; NASICON; synthesis; superionic conductors; structural analysis; transport properties

Citation Formats

Weiss, Manuel, Weber, Dominik A., Senyshyn, Anatoliy, Janek, Jürgen, and Zeier, Wolfgang G. Correlating Transport and Structural Properties in Li 1+xAlxGe2–x(PO 4)3 (LAGP) Prepared from Aqueous Solution. United States: N. p., 2018. Web. doi:10.1021/acsami.8b00842.
Weiss, Manuel, Weber, Dominik A., Senyshyn, Anatoliy, Janek, Jürgen, & Zeier, Wolfgang G. Correlating Transport and Structural Properties in Li 1+xAlxGe2–x(PO 4)3 (LAGP) Prepared from Aqueous Solution. United States. https://doi.org/10.1021/acsami.8b00842
Weiss, Manuel, Weber, Dominik A., Senyshyn, Anatoliy, Janek, Jürgen, and Zeier, Wolfgang G. Thu . "Correlating Transport and Structural Properties in Li 1+xAlxGe2–x(PO 4)3 (LAGP) Prepared from Aqueous Solution". United States. https://doi.org/10.1021/acsami.8b00842. https://www.osti.gov/servlets/purl/1434719.
@article{osti_1434719,
title = {Correlating Transport and Structural Properties in Li 1+xAlxGe2–x(PO 4)3 (LAGP) Prepared from Aqueous Solution},
author = {Weiss, Manuel and Weber, Dominik A. and Senyshyn, Anatoliy and Janek, Jürgen and Zeier, Wolfgang G.},
abstractNote = {Li1+xAlxGe2–x(PO4)3 (LAGP) is a solid lithium-ion conductor belonging to the NASICON family, representing the solid solution of LiGe2(PO4)3 and AlPO4. The typical syntheses of LAGP either involve high-temperature melt-quenching, which is complicated and expensive, or a sol–gel process requiring costly organic germanium precursors. Herein, we report a simple method based on aqueous solutions without the need of ethoxide precursors. Using synchrotron and neutron diffraction, the crystal structure, the occupancies for Al and Ge, and the distribution of lithium were determined. Substitution of germanium by aluminum allows for an increased Li+ incorporation in the material and the actual Li+ content in the sample increases with the nominal Li+ content and a solubility limit is observed for higher aluminum content. By means of impedance spectroscopy, an increase in the ionic conductivity with increasing lithium content is observed. Whereas the lithium ionic conductivity improves, due to the increasing carrier density, the bulk activation energy increases. This correlation suggests that changes in the transport mechanism and correlated motion may be at play in the Li1+xAlxGe2–x(PO4)3 solid solution.},
doi = {10.1021/acsami.8b00842},
journal = {ACS Applied Materials and Interfaces},
number = 13,
volume = 10,
place = {United States},
year = {Thu Mar 08 00:00:00 EST 2018},
month = {Thu Mar 08 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 56 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Polyhedral representation of the crystal structure of Li1+xAlxGe2−x(PO4)3 (M = Al/Ge). The Wyckoff 6b position for Li(1) is shown in green and the 18e position for Li(2) is depicted in yellow. The split pair site around the Li(2) position (a 36f position) is shown as smaller greenmore » spheres and referred to as Li(3). (b) Visualization of the hopping path of Li + through the two triangle areas T1 and T2 according to Tietz and coworkers. « less

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

A solid future for battery development
journal, September 2016


Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Inorganic solid Li ion conductors: An overview
journal, June 2009


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li 6 PS 5 X (X = Cl, Br, I)
journal, July 2017

  • Kraft, Marvin A.; Culver, Sean P.; Calderon, Mario
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b06327

Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li 10 GeP 2 S 12
journal, August 2016


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Dependence of the Li-Ion Conductivity and Activation Energies on the Crystal Structure and Ionic Radii in Li 6 MLa 2 Ta 2 O 12
journal, March 2014

  • Zeier, Wolfgang G.; Zhou, Shiliang; Lopez-Bermudez, Beatriz
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14
  • DOI: 10.1021/am4060194

Li 10 SnP 2 S 12 : An Affordable Lithium Superionic Conductor
journal, October 2013

  • Bron, Philipp; Johansson, Sebastian; Zick, Klaus
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja407393y

Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
journal, January 2013

  • Kuhn, Alexander; Duppel, Viola; Lotsch, Bettina V.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41728j

Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12
journal, January 2013

  • Kuhn, Alexander; Köhler, Jürgen; Lotsch, Bettina V.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 28
  • DOI: 10.1039/c3cp51985f

Structure and ionic conductivity in lithium garnets
journal, January 2010

  • Cussen, Edmund J.
  • Journal of Materials Chemistry, Vol. 20, Issue 25
  • DOI: 10.1039/b925553b

NASICON-Structured Materials for Energy Storage
journal, February 2017


A Novel Sol-Gel Method for Large-Scale Production of Nanopowders: Preparation of Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 as an Example
journal, October 2015

  • Ma, Qianli; Xu, Qi; Tsai, Chih-Long
  • Journal of the American Ceramic Society, Vol. 99, Issue 2
  • DOI: 10.1111/jace.13997

Structure and Vibrational Dynamics of NASICON-Type LiTi 2 (PO 4 ) 3
journal, February 2017

  • Giarola, Marco; Sanson, Andrea; Tietz, Frank
  • The Journal of Physical Chemistry C, Vol. 121, Issue 7
  • DOI: 10.1021/acs.jpcc.6b11067

Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes
journal, August 2014

  • Francisco, Brian E.; Stoldt, Conrad R.; M’Peko, Jean-Claude
  • Chemistry of Materials, Vol. 26, Issue 16
  • DOI: 10.1021/cm5013872

Energetics of Ion Transport in NASICON-Type Electrolytes
journal, July 2015

  • Francisco, Brian E.; Stoldt, Conrad R.; M’Peko, Jean-Claude
  • The Journal of Physical Chemistry C, Vol. 119, Issue 29
  • DOI: 10.1021/acs.jpcc.5b03286

Improving NASICON Sinterability through Crystallization under High-Frequency Electrical Fields
journal, March 2016


Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic
journal, January 2008

  • Thokchom, Joykumar S.; Gupta, Nutan; Kumar, Binod
  • Journal of The Electrochemical Society, Vol. 155, Issue 12, p. A915-A920
  • DOI: 10.1149/1.2988731

The Crystal Structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr.
journal, January 1968


Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12
journal, February 1976


Sodium Ion Diffusion in Nasicon (Na 3 Zr 2 Si 2 PO 12 ) Solid Electrolytes: Effects of Excess Sodium
journal, October 2016

  • Park, Heetaek; Jung, Keeyoung; Nezafati, Marjan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b09992

Na1+xAlxGe2−xP3O12 (x = 0.5) glass–ceramic as a solid ionic conductor for sodium ion
journal, June 2016


Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate
journal, January 1990

  • Aono, Hiromichi
  • Journal of The Electrochemical Society, Vol. 137, Issue 4
  • DOI: 10.1149/1.2086597

Structural evolution of NASICON-type Li 1+x Al x Ge 2−x (PO 4 ) 3 using in situ synchrotron X-ray powder diffraction
journal, January 2016

  • Safanama, Dorsasadat; Sharma, Neeraj; Rao, Rayavarapu Prasada
  • Journal of Materials Chemistry A, Vol. 4, Issue 20
  • DOI: 10.1039/C6TA00402D

Microstructure and ion transport in Li1 + x Ti2 − x M x (PO4)3 (M = Cr, Fe, Al) NASICON-type materials
journal, February 2014


Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries
journal, November 2017


Very fast bulk Li ion diffusivity in crystalline Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 as seen using NMR relaxometry
journal, January 2015

  • Epp, Viktor; Ma, Qianli; Hammer, Eva-Maria
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 48
  • DOI: 10.1039/C5CP05337D

NMR Investigations in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 Ceramics Part III: Local Dynamical Aspect Seen from Aluminum and Phosphorus Sites
journal, December 2016

  • Emery, Joël; Šalkus, Tomas; Barré, Maud
  • The Journal of Physical Chemistry C, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpcc.6b11712

Lithium Ion Conduction in LiTi 2 (PO 4 ) 3 and Related Compounds Based on the NASICON Structure: A First-Principles Study
journal, July 2015


Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation
journal, January 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837868

Lithium Diffusion Pathway in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) Superionic Conductor
journal, March 2016


A microcontact impedance study on NASICON-type Li 1+x Al x Ti 2−x (PO 4 ) 3 (0 ≤ x ≤ 0.5) single crystals
journal, January 2016

  • Rettenwander, D.; Welzl, A.; Pristat, S.
  • Journal of Materials Chemistry A, Vol. 4, Issue 4
  • DOI: 10.1039/C5TA08545D

Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
journal, June 2013


Relationship between Activation Energy and Bottleneck Size for Li + Ion Conduction in NASICON Materials of Composition LiMM‘(PO 4 ) 3 ; M, M‘ = Ge, Ti, Sn, Hf
journal, January 1998

  • Martínez-Juárez, Ana; Pecharromán, Carlos; Iglesias, Juan E.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 2
  • DOI: 10.1021/jp973296c

Understanding Na Mobility in NASICON Materials:  A Rietveld, 23 Na and 31 P MAS NMR, and Impedance Study
journal, February 1998

  • Losilla, Enrique R.; Aranda, Miguel A. G.; Bruque, Sebastián
  • Chemistry of Materials, Vol. 10, Issue 2
  • DOI: 10.1021/cm970648j

A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries
journal, November 2016


Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries
journal, January 2016

  • Zhao, Erqing; Ma, Furui; Guo, Yudi
  • RSC Advances, Vol. 6, Issue 95
  • DOI: 10.1039/C6RA19415J

How To Improve Capacity and Cycling Stability for Next Generation Li–O 2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations
journal, March 2016

  • Bergner, Benjamin J.; Busche, Martin R.; Pinedo, Ricardo
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 12
  • DOI: 10.1021/acsami.5b10979

Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
journal, March 2016

  • Busche, Martin R.; Drossel, Thomas; Leichtweiss, Thomas
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2470

Stability of NASICON materials against water and CO 2 uptake
journal, April 2017


Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics
journal, August 2011


High lithium ion conducting solid electrolytes based on NASICON Li 1+x Al x M 2−x (PO 4 ) 3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)
journal, May 2015


Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic
journal, September 2015


The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass–ceramic
journal, May 2010


Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li 1+x Al x Ge 2−x (PO 4 ) 3
journal, November 2016


Structure, phase separation and Li dynamics in sol–gel-derived Li1+xAlxGe2−x(PO4)3
journal, August 2015


Preparation and Electrochemical Properties of Li 1+x Al x Ge 2-x (PO 4 ) 3 Synthesized by a Sol-Gel Method
journal, January 2012

  • Zhang, Ming; Takahashi, Keita; Imanishi, Nobuyuyki
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.080207jes

Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte
journal, May 2018


Recent advances in magnetic structure determination by neutron powder diffraction
journal, October 1993


VESTA : a three-dimensional visualization system for electronic and structural analysis
journal, May 2008


SPODI: High resolution powder diffractometer
journal, June 2015

  • Hoelzel, Markus; Senyshyn, Anatoliy; Dolotko, Oleksandr
  • Journal of large-scale research facilities JLSRF, Vol. 1
  • DOI: 10.17815/jlsrf-1-24

Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al 2 O 3
journal, April 1987

  • Thompson, P.; Cox, D. E.; Hastings, J. B.
  • Journal of Applied Crystallography, Vol. 20, Issue 2
  • DOI: 10.1107/S0021889887087090

PROFVAL : functions to calculate powder-pattern peak profiles with axial-divergence asymmetry
journal, February 1998


Neutron diffraction study on structural and magnetic properties of La 2 NiO 4
journal, May 1991

  • Rodriguez-Carvajal, J.; Fernandez-Diaz, M. T.; Martinez, J. L.
  • Journal of Physics: Condensed Matter, Vol. 3, Issue 19
  • DOI: 10.1088/0953-8984/3/19/002

Structural requirements for fast lithium ion migration in Li10GeP2S12
journal, January 2012

  • Adams, Stefan; Prasada Rao, R.
  • Journal of Materials Chemistry, Vol. 22, Issue 16
  • DOI: 10.1039/c2jm16688g

Relationship between bond valence and bond softness of alkali halides and chalcogenides
journal, May 2001


A Computational Investigation of Li 9 M 3 (P 2 O 7 ) 3 (PO 4 ) 2 (M = V, Mo) as Cathodes for Li Ion Batteries
journal, January 2012

  • Jain, Anubhav; Hautier, Geoffroy; Moore, Charles
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.080205jes

Relation structure-fast ion conduction in the NASICON solid solution
journal, March 1988


Neutron diffraction study of Li 4 Ti 5 O 12 at low temperatures
journal, October 2014


Electroceramics: Characterization by Impedance Spectroscopy
journal, March 1990

  • Irvine, John T. S.; Sinclair, Derek C.; West, Anthony R.
  • Advanced Materials, Vol. 2, Issue 3
  • DOI: 10.1002/adma.19900020304

Superionics: crystal structures and conduction processes
journal, June 2004


Origin of fast ion diffusion in super-ionic conductors
journal, June 2017

  • He, Xingfeng; Zhu, Yizhou; Mo, Yifei
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15893

Computational and Experimental Investigation of the Electrochemical Stability and Li-Ion Conduction Mechanism of LiZr 2 (PO 4 ) 3
journal, October 2017


Works referencing / citing this record:

Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties
journal, July 2019

  • Zhu, Hongzheng; Prasad, Anil; Doja, Somi
  • Nanomaterials, Vol. 9, Issue 8
  • DOI: 10.3390/nano9081086

New horizons for inorganic solid state ion conductors
journal, January 2018

  • Zhang, Zhizhen; Shao, Yuanjun; Lotsch, Bettina
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/c8ee01053f

Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes
journal, July 2019


Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties
text, January 2019

  • Zhu, Hongzheng; Prasad, Anil; Doja, Somi
  • Multidisciplinary Digital Publishing Institute
  • DOI: 10.14288/1.0380661

Spark Plasma Sintering of Lithium Aluminum Germanium Phosphate Solid Electrolyte and its Electrochemical Properties
journal, July 2019

  • Zhu, Hongzheng; Prasad, Anil; Doja, Somi
  • Nanomaterials, Vol. 9, Issue 8
  • DOI: 10.3390/nano9081086

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.