skip to main content


Title: Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces

Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelength scale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays of silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm 2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. As a result, it is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solarmore » cell designs incorporating nanostructured thin active layers.« less
 [1] ;  [2] ;  [2] ;  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. Northwestern Univ., Evanston, IL (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
California Inst. of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org:
Country of Publication:
United States
47 OTHER INSTRUMENTATION; Devices for energy harvesting; Metamaterials; Nanophotonics and plasmonics
OSTI Identifier: