skip to main content

DOE PAGESDOE PAGES

Title: Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. Furthermore, these states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.
Authors:
ORCiD logo [1] ;  [2] ; ORCiD logo [1] ; ORCiD logo [3] ; ORCiD logo [4] ; ORCiD logo [5] ; ORCiD logo [5] ; ORCiD logo [3] ;  [6] ; ORCiD logo [6] ; ORCiD logo [1] ;  [7] ;  [3] ; ORCiD logo [4] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rice Univ., Houston, TX (United States)
  3. Northwestern Univ., Evanston, IL (United States)
  4. Institut National des Sciences Appliquees (INSA) de Rennes, Rennes (France)
  5. Univ. de Rennes 1, Rennes (France)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States)
  7. Rice Univ., Houston, TX (United States)
Publication Date:
Report Number(s):
LA-UR-17-20088; BNL-204650-2018-JAAM
Journal ID: ISSN 0036-8075; TRN: US1800658
Grant/Contract Number:
AC52-06NA25396; 300034; 300035; SC0012541; 300033; SC0012704
Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Volume: 355; Journal Issue: 6331; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; Material Science
OSTI Identifier:
1434400
Alternate Identifier(s):
OSTI ID: 1414133; OSTI ID: 1437943

Blancon, Jean -Christophe Robert, Tsai, Hsinhan, Nie, Wanyi, Stoumpos, Costas C., Pedesseau, Laurent, Katan, Claudine, Kepenekian, Mikael, Soe, Chan M. M., Appavoo, Kannatassen, Sfeir, Matthew Y., Tretiak, Sergei, Ajayan, Pulickel M., Kanatzidis, Mercouri G., Even, Jacky, Crochet, John Jared, and Mohite, Aditya D.. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. United States: N. p., Web. doi:10.1126/science.aal4211.
Blancon, Jean -Christophe Robert, Tsai, Hsinhan, Nie, Wanyi, Stoumpos, Costas C., Pedesseau, Laurent, Katan, Claudine, Kepenekian, Mikael, Soe, Chan M. M., Appavoo, Kannatassen, Sfeir, Matthew Y., Tretiak, Sergei, Ajayan, Pulickel M., Kanatzidis, Mercouri G., Even, Jacky, Crochet, John Jared, & Mohite, Aditya D.. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. United States. doi:10.1126/science.aal4211.
Blancon, Jean -Christophe Robert, Tsai, Hsinhan, Nie, Wanyi, Stoumpos, Costas C., Pedesseau, Laurent, Katan, Claudine, Kepenekian, Mikael, Soe, Chan M. M., Appavoo, Kannatassen, Sfeir, Matthew Y., Tretiak, Sergei, Ajayan, Pulickel M., Kanatzidis, Mercouri G., Even, Jacky, Crochet, John Jared, and Mohite, Aditya D.. 2017. "Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites". United States. doi:10.1126/science.aal4211.
@article{osti_1434400,
title = {Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites},
author = {Blancon, Jean -Christophe Robert and Tsai, Hsinhan and Nie, Wanyi and Stoumpos, Costas C. and Pedesseau, Laurent and Katan, Claudine and Kepenekian, Mikael and Soe, Chan M. M. and Appavoo, Kannatassen and Sfeir, Matthew Y. and Tretiak, Sergei and Ajayan, Pulickel M. and Kanatzidis, Mercouri G. and Even, Jacky and Crochet, John Jared and Mohite, Aditya D.},
abstractNote = {Understanding and controlling charge and energy flow in state-of-the-art semiconductor quantum wells has enabled high-efficiency optoelectronic devices. Two-dimensional (2D) Ruddlesden-Popper perovskites are solution-processed quantum wells wherein the band gap can be tuned by varying the perovskite-layer thickness, which modulates the effective electron-hole confinement. We report that, counterintuitive to classical quantum-confined systems where photogenerated electrons and holes are strongly bound by Coulomb interactions or excitons, the photophysics of thin films made of Ruddlesden-Popper perovskites with a thickness exceeding two perovskite-crystal units (>1.3 nanometers) is dominated by lower-energy states associated with the local intrinsic electronic structure of the edges of the perovskite layers. Furthermore, these states provide a direct pathway for dissociating excitons into longer-lived free carriers that substantially improve the performance of optoelectronic devices.},
doi = {10.1126/science.aal4211},
journal = {Science},
number = 6331,
volume = 355,
place = {United States},
year = {2017},
month = {3}
}

Works referenced in this record:

Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals
journal, March 2004
  • Tanaka, Kenichiro; Kondo, Takashi
  • Science and Technology of Advanced Materials, Vol. 4, Issue 6, p. 599-604
  • DOI: 10.1016/j.stam.2003.09.019

Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors
journal, April 2016
  • Stoumpos, Constantinos C.; Cao, Duyen H.; Clark, Daniel J.
  • Chemistry of Materials, Vol. 28, Issue 8, p. 2852-2867
  • DOI: 10.1021/acs.chemmater.6b00847

Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors
journal, October 1999

High-efficiency solution-processed perovskite solar cells with millimeter-scale grains
journal, January 2015