DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding and Mitigating Capacity Fade in Aqueous Organic Redox Flow Batteries

Authors:
; ; ; ; ; ; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1434393
Grant/Contract Number:  
AR0000353
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 165 Journal Issue: 7; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English

Citation Formats

Murali, Advaith, Nirmalchandar, Archith, Krishnamoorthy, Sankarganesh, Hoober-Burkhardt, Lena, Yang, Bo, Soloveichik, Grigorii, Prakash, G. K. Surya, and Narayanan, S. R. Understanding and Mitigating Capacity Fade in Aqueous Organic Redox Flow Batteries. United States: N. p., 2018. Web. doi:10.1149/2.0161807jes.
Murali, Advaith, Nirmalchandar, Archith, Krishnamoorthy, Sankarganesh, Hoober-Burkhardt, Lena, Yang, Bo, Soloveichik, Grigorii, Prakash, G. K. Surya, & Narayanan, S. R. Understanding and Mitigating Capacity Fade in Aqueous Organic Redox Flow Batteries. United States. https://doi.org/10.1149/2.0161807jes
Murali, Advaith, Nirmalchandar, Archith, Krishnamoorthy, Sankarganesh, Hoober-Burkhardt, Lena, Yang, Bo, Soloveichik, Grigorii, Prakash, G. K. Surya, and Narayanan, S. R. Tue . "Understanding and Mitigating Capacity Fade in Aqueous Organic Redox Flow Batteries". United States. https://doi.org/10.1149/2.0161807jes.
@article{osti_1434393,
title = {Understanding and Mitigating Capacity Fade in Aqueous Organic Redox Flow Batteries},
author = {Murali, Advaith and Nirmalchandar, Archith and Krishnamoorthy, Sankarganesh and Hoober-Burkhardt, Lena and Yang, Bo and Soloveichik, Grigorii and Prakash, G. K. Surya and Narayanan, S. R.},
abstractNote = {},
doi = {10.1149/2.0161807jes},
journal = {Journal of the Electrochemical Society},
number = 7,
volume = 165,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/2.0161807jes

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Redox flow cells for energy conversion
journal, September 2006

  • Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.
  • Journal of Power Sources, Vol. 160, Issue 1, p. 716-732
  • DOI: 10.1016/j.jpowsour.2006.02.095

Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage
journal, January 2017

  • Hu, Bo; DeBruler, Camden; Rhodes, Zayn
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b10984

324. The mechanism of aromatic sulphonation and desulphonation in aqueous sulphuric acid
journal, January 1956


A study of the Fe(III)/Fe(II)–triethanolamine complex redox couple for redox flow battery application
journal, May 2006


To react the impossible ring
journal, December 2015

  • Myers, Dominic; Cyriac, Anish; Williams, Charlotte K.
  • Nature Chemistry, Vol. 8, Issue 1
  • DOI: 10.1038/nchem.2424

4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries
journal, September 2016


Layer-by-Layer Growth Mechanism of TiO[sub 2] Nanotube Arrays
journal, January 2011

  • Cao, Chunbin; Zhang, Guoshun; Song, Xueping
  • Journal of The Electrochemical Society, Vol. 158, Issue 1
  • DOI: 10.1149/1.3514690

A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
journal, December 2015

  • Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin
  • Advanced Energy Materials, Vol. 6, Issue 3, 1501449
  • DOI: 10.1002/aenm.201501449

A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries
journal, January 2015

  • Huang, Jinhua; Su, Liang; Kowalski, Jeffrey A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 29
  • DOI: 10.1039/C5TA02380G

A mathematical model for PEMFC in different flow modes
journal, October 2003


Kinetics of the desulfonation of benzenesulfonic acid and the toluenesulfonic acids in aqueous sulfuric acid
journal, January 1967

  • Wanders, A. C. M.; Cerfontain, H.
  • Recueil des Travaux Chimiques des Pays-Bas, Vol. 86, Issue 11
  • DOI: 10.1002/recl.19670861106

Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform
journal, January 2014

  • Su, Liang; Ferrandon, Magali; Kowalski, Jeffrey A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0811412jes

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples
journal, January 2014

  • Yang, Bo; Hoober-Burkhardt, Lena; Wang, Fang
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1001409jes

High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes
journal, January 2016

  • Yang, Bo; Hoober-Burkhardt, Lena; Krishnamoorthy, Sankarganesh
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1371607jes

A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR
journal, January 2016

  • Duan, Wentao; Vemuri, Rama S.; Milshtein, Jarrod D.
  • Journal of Materials Chemistry A, Vol. 4, Issue 15
  • DOI: 10.1039/C6TA01177B

A high-performance flow-field structured iron-chromium redox flow battery
journal, August 2016


Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

Advanced Redox-Flow Batteries: A Perspective
journal, September 2015

  • Perry, Mike L.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0101601jes

Alkaline quinone flow battery
journal, September 2015


A New Michael-Reaction-Resistant Benzoquinone for Aqueous Organic Redox Flow Batteries
journal, January 2017

  • Hoober-Burkhardt, Lena; Krishnamoorthy, Sankarganesh; Yang, Bo
  • Journal of The Electrochemical Society, Vol. 164, Issue 4
  • DOI: 10.1149/2.0351704jes

A biomimetic redox flow battery based on flavin mononucleotide
journal, October 2016

  • Orita, Akihiro; Verde, Michael G.; Sakai, Masanori
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13230

A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention
journal, February 2017


Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries
journal, December 2017


Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

On The Time Resolution of the Atomic Emission Spectroelectrochemistry Method
journal, December 2015

  • Shkirskiy, V.; Maciel, P.; Deconinck, J.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0991602jes