skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging Catalytic Activation of CO 2 on Cu 2O (110): A First-Principles Study

Abstract

Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO 2 reduction. While photoreduction of CO 2 is a viable approach for fuel generation, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu 2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO 2 and the Cu 2O surface is largely unknown, and detailed experimental measurements are lacking. In this study, density-functional-theory (DFT) calculations have been performed to identify the Cu 2O (110) surface stoichiometry that favors CO 2 reduction. To facilitate interpretation of scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO 2 reduction reaction on, and rational surface engineering of, Cu 2O (110). In conclusion, they also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  3. Purdue Univ., West Lafayette, IN (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1434330
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 6; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Li, Liang, Zhang, Rui, Vinson, John, Shirley, Eric L., Greeley, Jeffrey P., Guest, Jeffrey R., and Chan, Maria K. Y. Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study. United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.7b04803.
Li, Liang, Zhang, Rui, Vinson, John, Shirley, Eric L., Greeley, Jeffrey P., Guest, Jeffrey R., & Chan, Maria K. Y. Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study. United States. doi:10.1021/acs.chemmater.7b04803.
Li, Liang, Zhang, Rui, Vinson, John, Shirley, Eric L., Greeley, Jeffrey P., Guest, Jeffrey R., and Chan, Maria K. Y. Mon . "Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study". United States. doi:10.1021/acs.chemmater.7b04803. https://www.osti.gov/servlets/purl/1434330.
@article{osti_1434330,
title = {Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study},
author = {Li, Liang and Zhang, Rui and Vinson, John and Shirley, Eric L. and Greeley, Jeffrey P. and Guest, Jeffrey R. and Chan, Maria K. Y.},
abstractNote = {Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO2 reduction. While photoreduction of CO2 is a viable approach for fuel generation, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO2 and the Cu2O surface is largely unknown, and detailed experimental measurements are lacking. In this study, density-functional-theory (DFT) calculations have been performed to identify the Cu2O (110) surface stoichiometry that favors CO2 reduction. To facilitate interpretation of scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO2 reduction reaction on, and rational surface engineering of, Cu2O (110). In conclusion, they also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization.},
doi = {10.1021/acs.chemmater.7b04803},
journal = {Chemistry of Materials},
number = 6,
volume = 30,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Side (left) and top (right) views of the Cu2O (110) surface slab model. Blue box indicates the size of the primitive cell of the surface. Relaxed structural models of Cu2O (110) surface with (b) no surface defects, (c) one O vacancy, and additional O atom at (d)more » ShH site and (e) B site. Brown, red and blue spheres represent Cu atoms, native O atoms in the oxide and additional O atoms, respectively. (f) Relative formation energies of ideal, O-deficient and O-excess surfaces as a function of oxygen chemical potential. The calculated formation energy of each surface slab is normalized by the formation energy of ideal surface in the O-rich limit (∆𝝁𝑶 = 𝟎 𝒆𝑽).« less

Save / Share: