skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dissipative transport in superlattices within the Wigner function formalism

Abstract

Here, we employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.

Authors:
 [1];  [1]
  1. Univ. of Wisconsin-Madison, Madison, WI (United States)
Publication Date:
Research Org.:
Univ. of Wisconsin-Madison, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1434252
Grant/Contract Number:  
SC0008712
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Computational Electronics
Additional Journal Information:
Journal Volume: 14; Journal Issue: 4; Journal ID: ISSN 1569-8025
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; Wigner function; Wigner transport equation; Superlattice; Quantum transport; Dissipation; Decoherence; Density matrix

Citation Formats

Jonasson, O., and Knezevic, I. Dissipative transport in superlattices within the Wigner function formalism. United States: N. p., 2015. Web. doi:10.1007/s10825-015-0734-9.
Jonasson, O., & Knezevic, I. Dissipative transport in superlattices within the Wigner function formalism. United States. doi:10.1007/s10825-015-0734-9.
Jonasson, O., and Knezevic, I. Thu . "Dissipative transport in superlattices within the Wigner function formalism". United States. doi:10.1007/s10825-015-0734-9. https://www.osti.gov/servlets/purl/1434252.
@article{osti_1434252,
title = {Dissipative transport in superlattices within the Wigner function formalism},
author = {Jonasson, O. and Knezevic, I.},
abstractNote = {Here, we employ the Wigner function formalism to simulate partially coherent, dissipative electron transport in biased semiconductor superlattices. We introduce a model collision integral with terms that describe energy dissipation, momentum relaxation, and the decay of spatial coherences (localization). Based on a particle-based solution to the Wigner transport equation with the model collision integral, we simulate quantum electronic transport at 10 K in a GaAs/AlGaAs superlattice and accurately reproduce its current density vs field characteristics obtained in experiment.},
doi = {10.1007/s10825-015-0734-9},
journal = {Journal of Computational Electronics},
number = 4,
volume = 14,
place = {United States},
year = {2015},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Transport and its Simulation with the Wigner-Function Approach
journal, June 2001

  • Jacoboni, Carlo; Brunetti, Rossella; Bordone, Paolo
  • International Journal of High Speed Electronics and Systems, Vol. 11, Issue 02
  • DOI: 10.1142/S0129156401000897

Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices
journal, September 2004


Dissipative quantum transport in silicon nanowires based on Wigner transport equation
journal, November 2011

  • Barraud, Sylvain
  • Journal of Applied Physics, Vol. 110, Issue 9
  • DOI: 10.1063/1.3654143

Path integral approach to quantum Brownian motion
journal, September 1983

  • Caldeira, A. O.; Leggett, A. J.
  • Physica A: Statistical Mechanics and its Applications, Vol. 121, Issue 3
  • DOI: 10.1016/0378-4371(83)90013-4

Quantum transport of electrons in open nanostructures with the Wigner-function formalism
journal, January 1999


A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB
journal, December 2010

  • Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing
  • Nature Physics, Vol. 7, Issue 2
  • DOI: 10.1038/nphys1846

Self-consistent study of the resonant-tunneling diode
journal, April 1989


Coulomb-driven terahertz-frequency intrinsic current oscillations in a double-barrier tunneling structure
journal, October 2014


Calderia-Leggett master equation and medium temperatures
journal, November 1993


An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
journal, May 2015


Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition
journal, October 2014

  • Ellinghaus, Paul; Weinbub, Josef; Nedjalkov, Mihail
  • Journal of Computational Electronics, Vol. 14, Issue 1
  • DOI: 10.1007/s10825-014-0635-3

Wigner Method in Quantum Statistical Mechanics
journal, May 1967

  • İmre, Kaya; Özizmir, Ercüment; Rosenbaum, Marcos
  • Journal of Mathematical Physics, Vol. 8, Issue 5
  • DOI: 10.1063/1.1705323

Intrinsic oscillations of spin current polarization in a paramagnetic resonant tunneling diode
journal, October 2012


Semiconductor superlattices: a model system for nonlinear transport
journal, January 2002


The Wigner representation of quantum mechanics
journal, April 1983


Quantum mechanics as a statistical theory
journal, January 1949

  • Moyal, J. E.
  • Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 45, Issue 1
  • DOI: 10.1017/S0305004100000487

On the Quantum Correction For Thermodynamic Equilibrium
journal, June 1932


The Wigner-function approach to non-equilibrium electron transport
journal, June 2004


An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs
journal, December 2006

  • Querlioz, Damien; Dollfus, Philippe; Do, Van-Nam
  • Journal of Computational Electronics, Vol. 5, Issue 4
  • DOI: 10.1007/s10825-006-0044-3

Simulation of multilayered resonant tunneling diodes using coupled Wigner and Boltzmann distribution function approaches
journal, November 2000

  • Garcı́a-Garcı́a, J.; Martı́n, F.
  • Applied Physics Letters, Vol. 77, Issue 21
  • DOI: 10.1063/1.1328100

Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures
journal, February 1991


Comparison of self-consistency iteration options for the Wigner function method of quantum device simulation
journal, September 1996


Device modeling in the Wigner picture: Computational aspects
journal, October 2010

  • Nedjalkov, M.; Kosina, H.; Schwaha, P.
  • Journal of Computational Electronics, Vol. 9, Issue 3-4
  • DOI: 10.1007/s10825-010-0316-9

On the principles of elementary quantum mechanics
journal, October 1946


The Wigner function for electron transport in mesoscopic systems
journal, July 1999

  • Bertoni, Andrea; Bordone, Paolo; Brunetti, Rossella
  • Journal of Physics: Condensed Matter, Vol. 11, Issue 31
  • DOI: 10.1088/0953-8984/11/31/308

The Wigner–Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant
journal, October 2014


Application of the Phase Space Quasi-Probability Distribution to the Nuclear Shell Model
journal, October 1960

  • Baker, George A.; McCarthy, Ian E.; Porter, Charles E.
  • Physical Review, Vol. 120, Issue 1
  • DOI: 10.1103/PhysRev.120.254

Distribution functions in physics: Fundamentals
journal, April 1984


A signed particle formulation of non-relativistic quantum mechanics
journal, September 2015


Quantenmechanik und Gruppentheorie
journal, November 1927


Phase space distribution of an N-dimensional harmonic oscillator
journal, March 1981


Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport
journal, August 2009

  • Querlioz, Damien; Nguyen, Huu-Nha; Saint-Martin, Jérôme
  • Journal of Computational Electronics, Vol. 8, Issue 3-4
  • DOI: 10.1007/s10825-009-0281-3

Quark imaging in the proton via quantum phase-space distributions
journal, April 2004


Transient Response of a Tunneling Device Obtainefrom the Wigner Function
journal, December 1986


Time-dependent transport in open systems based on quantum master equations
journal, June 2013


Particle Monte Carlo simulation of Wigner function tunneling
journal, July 2001


Classical and quantum mechanics of the damped harmonic oscillator
journal, December 1981