DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals

Abstract

An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can then be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-,Cl-)-water clusters that involve charge-transfer-to-solvent excitations.

Authors:
 [1];  [2]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States). Kenneth S. Pitzer Center for Theoretical Chemistry and Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Science Division
  2. Univ. of California, Berkeley, CA (United States). Kenneth S. Pitzer Center for Theoretical Chemistry and Dept. of Chemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1434021
Alternate Identifier(s):
OSTI ID: 1420021
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 6; Related Information: © 2018 Author(s).; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 74 ATOMIC AND MOLECULAR PHYSICS; hydrogen bonding; intermolecular forces; excitation energies; Doppler effect; self consistent field methods; configuration interaction; time dependent density functional theory; chemical compounds; electrostatics

Citation Formats

Ge, Qinghui, Mao, Yuezhi, and Head-Gordon, Martin. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals. United States: N. p., 2018. Web. doi:10.1063/1.5017510.
Ge, Qinghui, Mao, Yuezhi, & Head-Gordon, Martin. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals. United States. https://doi.org/10.1063/1.5017510
Ge, Qinghui, Mao, Yuezhi, and Head-Gordon, Martin. Wed . "Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals". United States. https://doi.org/10.1063/1.5017510. https://www.osti.gov/servlets/purl/1434021.
@article{osti_1434021,
title = {Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals},
author = {Ge, Qinghui and Mao, Yuezhi and Head-Gordon, Martin},
abstractNote = {An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can then be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-,Cl-)-water clusters that involve charge-transfer-to-solvent excitations.},
doi = {10.1063/1.5017510},
journal = {Journal of Chemical Physics},
number = 6,
volume = 148,
place = {United States},
year = {Wed Feb 14 00:00:00 EST 2018},
month = {Wed Feb 14 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The absorption spectra of simple amides and peptides
journal, June 1967

  • Nielsen, Eigil B.; Schellman, John A.
  • The Journal of Physical Chemistry, Vol. 71, Issue 7
  • DOI: 10.1021/j100866a051

Charge-transfer-to-solvent spectra of an aqueous halide revisited via computer simulation
journal, August 1993

  • Sheu, Wen Shyan; Rossky, Peter J.
  • Journal of the American Chemical Society, Vol. 115, Issue 17
  • DOI: 10.1021/ja00070a017

On the Transformation of light into Heat in Solids. I
journal, January 1931


Charge-transfer in Symmetry-Adapted Perturbation Theory
journal, April 2009


Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals
journal, September 2007

  • Khaliullin, Rustam Z.; Cobar, Erika A.; Lochan, Rohini C.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 36
  • DOI: 10.1021/jp073685z

On the Photochemistry of Aqueous Solutions of Chloride, Bromide, and Iodide Ions
journal, February 1964

  • Jortner, Joshua; Ottolenghi, Michael; Stein, Gabriel
  • The Journal of Physical Chemistry, Vol. 68, Issue 2
  • DOI: 10.1021/j100784a005

An efficient self-consistent field method for large systems of weakly interacting components
journal, May 2006

  • Khaliullin, Rustam Z.; Head-Gordon, Martin; Bell, Alexis T.
  • The Journal of Chemical Physics, Vol. 124, Issue 20
  • DOI: 10.1063/1.2191500

Energy decomposition analysis of covalent bonds and intermolecular interactions
journal, July 2009

  • Su, Peifeng; Li, Hui
  • The Journal of Chemical Physics, Vol. 131, Issue 1
  • DOI: 10.1063/1.3159673

Solvent Effects on the Electronic Transitions of p -Nitroaniline: A QM/EFP Study
journal, February 2011

  • Kosenkov, Dmytro; Slipchenko, Lyudmila V.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 4
  • DOI: 10.1021/jp110026c

Symmetry-adapted perturbation theory utilizing density functional description of monomers for high-spin open-shell complexes
journal, August 2008

  • Żuchowski, Piotr S.; Podeszwa, Rafał; Moszyński, Robert
  • The Journal of Chemical Physics, Vol. 129, Issue 8
  • DOI: 10.1063/1.2968556

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


Quantum Mechanical Continuum Solvation Models
journal, October 2005

  • Tomasi, Jacopo; Menucci, Benedetta; Cammi, Roberto
  • ChemInform, Vol. 36, Issue 42
  • DOI: 10.1002/chin.200542292

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes
journal, November 1994

  • Jeziorski, Bogumil; Moszynski, Robert; Szalewicz, Krzysztof
  • Chemical Reviews, Vol. 94, Issue 7
  • DOI: 10.1021/cr00031a008

Theoretical treatment of solvent effects on electronic spectroscopy
journal, August 1992

  • Karelson, Mati M.; Zerner, Michael C.
  • The Journal of Physical Chemistry, Vol. 96, Issue 17
  • DOI: 10.1021/j100196a019

Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies
journal, October 2009

  • Wu, Qin; Ayers, Paul W.; Zhang, Yingkai
  • The Journal of Chemical Physics, Vol. 131, Issue 16
  • DOI: 10.1063/1.3253797

Superposition of Fragment Excitations for Excited States of Large Clusters with Application to Helium Clusters
journal, November 2015

  • Closser, Kristina D.; Ge, Qinghui; Mao, Yuezhi
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 12
  • DOI: 10.1021/acs.jctc.5b00703

A tensor formulation of many-electron theory in a nonorthogonal single-particle basis
journal, January 1998

  • Head-Gordon, Martin; Maslen, Paul E.; White, Christopher A.
  • The Journal of Chemical Physics, Vol. 108, Issue 2
  • DOI: 10.1063/1.475423

Observation of Atomiclike Electronic Excitations in Pure 3He and 4He Clusters Studied by Fluorescence Excitation Spectroscopy
text, January 2001

  • Laarmann, T.; Möller, T.; Von Haeften, K.
  • The American Physical Society
  • DOI: 10.17877/de290r-4193

Calculations on the electronic spectrum of water
journal, November 1974


Electronic excitations in liquid helium: The evolution from small clusters to large droplets
text, January 1993


Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals
journal, August 2015

  • Thirman, Jonathan; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 143, Issue 8
  • DOI: 10.1063/1.4929479

Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions
journal, August 2013

  • Jansen, Georg
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 2
  • DOI: 10.1002/wcms.1164

A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation
journal, March 1976

  • Kitaura, Kazuo; Morokuma, Keiji
  • International Journal of Quantum Chemistry, Vol. 10, Issue 2
  • DOI: 10.1002/qua.560100211

Polarizable Density Embedding: A Solution to the Electron Spill-Out Problem in Multiscale Modeling
journal, November 2017

  • Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 23
  • DOI: 10.1021/acs.jpclett.7b02788

Energy Decomposition Scheme Based on the Generalized Kohn–Sham Scheme
journal, March 2014

  • Su, Peifeng; Jiang, Zhen; Chen, Zuochang
  • The Journal of Physical Chemistry A, Vol. 118, Issue 13
  • DOI: 10.1021/jp500405s

A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations
journal, July 1990

  • Field, Martin J.; Bash, Paul A.; Karplus, Martin
  • Journal of Computational Chemistry, Vol. 11, Issue 6
  • DOI: 10.1002/jcc.540110605

Efficient Implementation of Energy Decomposition Analysis for Second-Order Møller–Plesset Perturbation Theory and Application to Anion−π Interactions
journal, January 2017

  • Thirman, Jonathan; Head-Gordon, Martin
  • The Journal of Physical Chemistry A, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpca.6b11516

Size and Isotope Effects of Helium Clusters and Droplets: Identification of Surface and Bulk-Volume Excitations
journal, June 2011

  • von Haeften, Klaus; Laarmann, Tim; Wabnitz, Hubertus
  • The Journal of Physical Chemistry A, Vol. 115, Issue 25
  • DOI: 10.1021/jp2008489

Solvation of the Excited States of Chromophores in Polarizable Environment: Orbital Relaxation versus Polarization
journal, August 2010

  • Slipchenko, Lyudmila V.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 33
  • DOI: 10.1021/jp101797a

Single-Reference ab initio Methods for the Calculation of Excited States of Large Molecules
journal, January 2006


Electronic Spectra of Isoelectronic Amides, Acids, and Acyl Fluorides
journal, December 1968

  • Basch, Harold; Robin, M. B.; Kuebler, N. A.
  • The Journal of Chemical Physics, Vol. 49, Issue 11
  • DOI: 10.1063/1.1669992

Structures, energetics, and spectra of fluoride–water clusters F−(H2O)n, n=1–6: Ab initio study
journal, May 1999

  • Baik, Jiwon; Kim, Jongseob; Majumdar, D.
  • The Journal of Chemical Physics, Vol. 110, Issue 18
  • DOI: 10.1063/1.478833

Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: Theory and applications to intermolecular interactions involving radicals
journal, April 2013

  • Horn, Paul R.; Sundstrom, Eric Jon; Baker, Thomas A.
  • The Journal of Chemical Physics, Vol. 138, Issue 13
  • DOI: 10.1063/1.4798224

The merits of the frozen-density embedding scheme to model solvatochromic shifts
journal, March 2005

  • Neugebauer, Johannes; Louwerse, Manuel J.; Baerends, Evert Jan
  • The Journal of Chemical Physics, Vol. 122, Issue 9
  • DOI: 10.1063/1.1858411

Solvent Induced Shifts in the UV Spectrum of Amides
journal, May 2013

  • De Silva, Nuwan; Willow, Soohaeng Y.; Gordon, Mark S.
  • The Journal of Physical Chemistry A, Vol. 117, Issue 46
  • DOI: 10.1021/jp402999p

Embedding beyond electrostatics—The role of wave function confinement
journal, September 2016

  • Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna
  • The Journal of Chemical Physics, Vol. 145, Issue 10
  • DOI: 10.1063/1.4962367

Time-Dependent Density Functional Theory
journal, June 2004


Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations
journal, December 2005

  • Misquitta, Alston J.; Podeszwa, Rafał; Jeziorski, Bogumił
  • The Journal of Chemical Physics, Vol. 123, Issue 21
  • DOI: 10.1063/1.2135288

Ab Initio Calculations on the Electronically Excited States of Small Helium Clusters
journal, August 2010

  • Closser, Kristina D.; Head-Gordon, Martin
  • The Journal of Physical Chemistry A, Vol. 114, Issue 31
  • DOI: 10.1021/jp103532q

Hydrogen bonding and reactivity of water to azines in their S1 (n,π*) electronic excited states in the gas phase and in solution
journal, January 2012

  • Reimers, Jeffrey R.; Cai, Zheng-Li
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 25
  • DOI: 10.1039/c2cp24040h

Femtosecond dynamics of photodetachment of the iodide anion in solution: resonant excitation into the charge-transfer-to-solvent state
journal, December 1998

  • Kloepfer, Jeremiah A.; Vilchiz, Victor H.; Lenchenkov, Victor A.
  • Chemical Physics Letters, Vol. 298, Issue 1-3
  • DOI: 10.1016/s0009-2614(98)01210-x

Ab Initio Study of Hydrogen-Bonded Complexes of Small Organic Molecules with Water
journal, May 1998

  • Rablen, Paul R.; Lockman, Jeffrey W.; Jorgensen, William L.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 21
  • DOI: 10.1021/jp980708o

Wavefunction methods for noncovalent interactions: Noncovalent interactions
journal, July 2011

  • Hohenstein, Edward G.; Sherrill, C. David
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.84

Symmetry-adapted perturbation theory of intermolecular forces: Symmetry-adapted perturbation theory
journal, August 2011

  • Szalewicz, Krzysztof
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 2
  • DOI: 10.1002/wcms.86

Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity
journal, August 1977


Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies
journal, March 2016

  • Horn, Paul R.; Mao, Yuezhi; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 144, Issue 11
  • DOI: 10.1063/1.4942921

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer
journal, August 1987


Dispersion-Corrected Energy Decomposition Analysis for Intermolecular Interactions Based on the BLW and dDXDM Methods
journal, June 2011

  • Steinmann, Stephan N.; Corminboeuf, Clemence; Wu, Wei
  • The Journal of Physical Chemistry A, Vol. 115, Issue 21
  • DOI: 10.1021/jp202560d

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

QM/MM Methods for Biomolecular Systems
journal, January 2009

  • Senn, Hans Martin; Thiel, Walter
  • Angewandte Chemie International Edition, Vol. 48, Issue 7
  • DOI: 10.1002/anie.200802019

Hydrogen bonding in globular proteins
journal, January 1984


Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions
journal, September 2015

  • Horn, Paul R.; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 143, Issue 11
  • DOI: 10.1063/1.4930534

Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach
journal, April 2000

  • Mo, Yirong; Gao, Jiali; Peyerimhoff, Sigrid D.
  • The Journal of Chemical Physics, Vol. 112, Issue 13
  • DOI: 10.1063/1.481185

Charge Transfer from Regularized Symmetry-Adapted Perturbation Theory
journal, November 2013

  • Misquitta, Alston J.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct400704a

Comparative ab initio study of the structures, energetics and spectra of X[sup −]⋅(H[sub 2]O)[sub n=1–4] [X=F, Cl, Br, I] clusters
journal, January 2000

  • Kim, Jongseob; Lee, Han Myoung; Suh, Seung Bum
  • The Journal of Chemical Physics, Vol. 113, Issue 13
  • DOI: 10.1063/1.1290016

Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems
journal, April 2014

  • Nakata, Hiroya; Fedorov, Dmitri G.; Yokojima, Satoshi
  • The Journal of Chemical Physics, Vol. 140, Issue 14
  • DOI: 10.1063/1.4870261

Toward a systematic molecular orbital theory for excited states
journal, January 1992

  • Foresman, James B.; Head-Gordon, Martin; Pople, John A.
  • The Journal of Physical Chemistry, Vol. 96, Issue 1
  • DOI: 10.1021/j100180a030

A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al 4 CO and Al 4 NH 3
journal, May 1984

  • Bagus, Paul S.; Hermann, K.; Bauschlicher, Charles W.
  • The Journal of Chemical Physics, Vol. 80, Issue 9
  • DOI: 10.1063/1.447215

Theory and applications of charge-transfer-to-solvent spectra
journal, February 1970

  • Blandamer, Michael J.; Fox, Malcom F.
  • Chemical Reviews, Vol. 70, Issue 1
  • DOI: 10.1021/cr60263a002

Simulating the absorption spectra of helium clusters (N = 70, 150, 231, 300) using a charge transfer correction to superposition of fragment single excitations
journal, January 2017

  • Ge, Qinghui; Mao, Yuezhi; White, Alec F.
  • The Journal of Chemical Physics, Vol. 146, Issue 4
  • DOI: 10.1063/1.4973611

Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules
journal, November 2005

  • Dreuw, Andreas; Head-Gordon, Martin
  • Chemical Reviews, Vol. 105, Issue 11
  • DOI: 10.1021/cr0505627

On the calculation of bonding energies by the Hartree Fock Slater method: I. The transition state method
journal, January 1977

  • Ziegler, Tom; Rauk, Arvi
  • Theoretica Chimica Acta, Vol. 46, Issue 1
  • DOI: 10.1007/bf00551648

Charge transfer to solvent (CTTS) energies of small X−(H2O)n=1–4 (X=F, Cl, Br, I) clusters: Ab initio study
journal, January 2000

  • Majumdar, D.; Kim, Jongseob; Kim, Kwang S.
  • The Journal of Chemical Physics, Vol. 112, Issue 1
  • DOI: 10.1063/1.480565

Block-Localized Wavefunction (BLW) Method at the Density Functional Theory (DFT) Level
journal, August 2007

  • Mo, Yirong; Song, Lingchun; Lin, Yuchun
  • The Journal of Physical Chemistry A, Vol. 111, Issue 34
  • DOI: 10.1021/jp0724065

Time-dependent density-functional theory for molecules and molecular solids
journal, November 2009


Polarizable Density Embedding: A New QM/QM/MM-Based Computational Strategy
journal, December 2014

  • Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth
  • The Journal of Physical Chemistry A, Vol. 119, Issue 21
  • DOI: 10.1021/jp510138k

Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory
journal, January 2011

  • Mo, Yirong; Bao, Peng; Gao, Jiali
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 15
  • DOI: 10.1039/c0cp02206c

Precursors of the Charge-Transfer-to-Solvent States in I - (H 2 O) n Clusters
journal, August 2000

  • Chen, Hsing-Yin; Sheu, Wen-Shyan
  • Journal of the American Chemical Society, Vol. 122, Issue 31
  • DOI: 10.1021/ja000207s

Solvent-Induced Frequency Shifts: Configuration Interaction Singles Combined with the Effective Fragment Potential Method
journal, July 2010

  • Arora, Pooja; Slipchenko, Lyudmila V.; Webb, Simon P.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 25
  • DOI: 10.1021/jp101780r

Frozen density functional approach for ab initio calculations of solvated molecules
journal, July 1993

  • Wesolowski, Tomasz Adam; Warshel, Arieh
  • The Journal of Physical Chemistry, Vol. 97, Issue 30
  • DOI: 10.1021/j100132a040

Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems
journal, April 2016


Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
journal, April 1984

  • Frisch, Michael J.; Pople, John A.; Binkley, J. Stephen
  • The Journal of Chemical Physics, Vol. 80, Issue 7
  • DOI: 10.1063/1.447079

Precursor of the I aq charge‐transfer‐to‐solvent (CTTS) band in I ⋅(H 2 O) n clusters
journal, October 1996

  • Serxner, David; Dessent, Caroline E. H.; Johnson, Mark A.
  • The Journal of Chemical Physics, Vol. 105, Issue 16
  • DOI: 10.1063/1.472529

Energy decomposition analysis: Energy decomposition analysis
journal, June 2011

  • Hopffgarten, Moritz von; Frenking, Gernot
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.71

The Theory of Intermolecular Forces
book, January 2013


Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions
journal, May 2016

  • Lao, Ka Un; Herbert, John M.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 6
  • DOI: 10.1021/acs.jctc.6b00155

Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure
journal, April 2015

  • Wesolowski, Tomasz A.; Shedge, Sapana; Zhou, Xiuwen
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500502v

Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H 2 O and HF dimers
journal, November 1991

  • Rybak, Stanisl/aw; Jeziorski, Bogumil/; Szalewicz, Krzysztof
  • The Journal of Chemical Physics, Vol. 95, Issue 9
  • DOI: 10.1063/1.461528

Works referencing / citing this record:

Generalized Kohn‐Sham energy decomposition analysis and its applications
journal, January 2020

  • Su, Peifeng; Tang, Zhen; Wu, Wei
  • WIREs Computational Molecular Science, Vol. 10, Issue 5
  • DOI: 10.1002/wcms.1460