skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrocatalytic transformation of HF impurity to H 2 and LiF in lithium-ion batteries

Abstract

The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H 2. Although the kinetics of HF dissociation and the concomitant production of LiF and H 2 is dependent on the structure and nature of surface atoms, the underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1];  [3];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2];  [3];  [4]; ORCiD logo [4];  [1];  [2];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  2. Univ. of Copenhagen (Denmark). Nano-Science Center. Dept. of Chemistry
  3. Technical Univ. of Munich (Germany). Chair of Technical Electrochemistry. Dept. of Chemistry. Catalysis Research Center
  4. BMW Group, Munich (Germany). Battery Cell Technology
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); BMW Group, Munich (Germany)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); BMW Technology Corporation (Germany)
OSTI Identifier:
1433882
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Catalysis
Additional Journal Information:
Journal Volume: 1; Journal Issue: 4; Journal ID: ISSN 2520-1158
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; batteries; electrocatalysis; electrochemistry

Citation Formats

Strmcnik, Dusan, Castelli, Ivano E., Connell, Justin G., Haering, Dominik, Zorko, Milena, Martins, Pedro, Lopes, Pietro P., Genorio, Bostjan, Ostergaard, Thomas, Gasteiger, Hubert A., Maglia, Filippo, Antonopoulos, Byron K., Stamenkovic, Vojislav R., Rossmeisl, Jan, and Markovic, Nenad M. Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. United States: N. p., 2018. Web. doi:10.1038/s41929-018-0047-z.
Strmcnik, Dusan, Castelli, Ivano E., Connell, Justin G., Haering, Dominik, Zorko, Milena, Martins, Pedro, Lopes, Pietro P., Genorio, Bostjan, Ostergaard, Thomas, Gasteiger, Hubert A., Maglia, Filippo, Antonopoulos, Byron K., Stamenkovic, Vojislav R., Rossmeisl, Jan, & Markovic, Nenad M. Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. United States. doi:10.1038/s41929-018-0047-z.
Strmcnik, Dusan, Castelli, Ivano E., Connell, Justin G., Haering, Dominik, Zorko, Milena, Martins, Pedro, Lopes, Pietro P., Genorio, Bostjan, Ostergaard, Thomas, Gasteiger, Hubert A., Maglia, Filippo, Antonopoulos, Byron K., Stamenkovic, Vojislav R., Rossmeisl, Jan, and Markovic, Nenad M. Mon . "Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries". United States. doi:10.1038/s41929-018-0047-z. https://www.osti.gov/servlets/purl/1433882.
@article{osti_1433882,
title = {Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries},
author = {Strmcnik, Dusan and Castelli, Ivano E. and Connell, Justin G. and Haering, Dominik and Zorko, Milena and Martins, Pedro and Lopes, Pietro P. and Genorio, Bostjan and Ostergaard, Thomas and Gasteiger, Hubert A. and Maglia, Filippo and Antonopoulos, Byron K. and Stamenkovic, Vojislav R. and Rossmeisl, Jan and Markovic, Nenad M.},
abstractNote = {The formation of solid electrolyte interphase on graphite anodes plays a key role in the efficiency of Li-ion batteries. However, to date, fundamental understanding of the formation of LiF as one of the main solid electrolyte interphase components in hexafluorophosphate-based electrolytes remains elusive. In this paper, we present experimental and theoretical evidence that LiF formation is an electrocatalytic process that is controlled by the electrochemical transformation of HF impurity to LiF and H2. Although the kinetics of HF dissociation and the concomitant production of LiF and H2 is dependent on the structure and nature of surface atoms, the underlying electrochemistry is the same. The morphology, and thus the role, of the LiF formed is strongly dependent on the nature of the substrate and HF inventory, leading to either complete or partial passivation of the interface. Finally, our finding is of general importance and may lead to new opportunities for the improvement of existing, and design of new, Li-ion technologies.},
doi = {10.1038/s41929-018-0047-z},
journal = {Nature Catalysis},
number = 4,
volume = 1,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The interaction of water with solid surfaces: Fundamental aspects
journal, October 1987


Origin of Anomalous Activities for Electrocatalysts in Alkaline Electrolytes
journal, October 2012

  • Subbaraman, Ram; Danilovic, N.; Lopes, P. P.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 42
  • DOI: 10.1021/jp3075783

Unique Activity of Platinum Adislands in the CO Electrooxidation Reaction
journal, November 2008

  • Strmcnik, Dusan S.; Tripkovic, Dusan V.; van der Vliet, Dennis
  • Journal of the American Chemical Society, Vol. 130, Issue 46
  • DOI: 10.1021/ja8032185

Decomposition reaction of LiPF6-based electrolytes for lithium ion cells
journal, June 2006


Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

pH in Grand Canonical Statistics of an Electrochemical Interface
journal, December 2016

  • Hansen, Martin Hangaard; Rossmeisl, Jan
  • The Journal of Physical Chemistry C, Vol. 120, Issue 51
  • DOI: 10.1021/acs.jpcc.6b09019

In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries
journal, December 2011

  • Domi, Yasuhiro; Ochida, Manabu; Tsubouchi, Sigetaka
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2064672

Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution
journal, January 2001

  • Jeong, Soon-Ki; Inaba, Minoru; Abe, Takeshi
  • Journal of The Electrochemical Society, Vol. 148, Issue 9
  • DOI: 10.1149/1.1387981

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Origin of H 2 Evolution in LIBs: H 2 O Reduction vs. Electrolyte Oxidation
journal, January 2016

  • Metzger, Michael; Strehle, Benjamin; Solchenbach, Sophie
  • Journal of The Electrochemical Society, Vol. 163, Issue 5
  • DOI: 10.1149/2.1151605jes

Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
journal, June 2010


Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study
journal, January 2005

  • Leroy, S.; Blanchard, F.; Dedryvère, R.
  • Surface and Interface Analysis, Vol. 37, Issue 10
  • DOI: 10.1002/sia.2072

The interaction of water with solid surfaces: fundamental aspects revisited
journal, May 2002


Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry
journal, May 2012

  • Owejan, Jeanette E.; Owejan, Jon P.; DeCaluwe, Steven C.
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm3006887

Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study
journal, March 2007


Energy and fuels from electrochemical interfaces
journal, December 2016

  • Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4738

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Role of 1,3-Propane Sultone and Vinylene Carbonate in Solid Electrolyte Interface Formation and Gas Generation
journal, May 2015

  • Zhang, Bo; Metzger, Michael; Solchenbach, Sophie
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/acs.jpcc.5b00072

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes
journal, January 2012


Electric Potential Gradient at the Buried Interface between Lithium-Ion Battery Electrodes and the SEI Observed Using Photoelectron Spectroscopy
journal, April 2016

  • Maibach, Julia; Lindgren, Fredrik; Eriksson, Henrik
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 10
  • DOI: 10.1021/acs.jpclett.6b00391

Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte
journal, November 2013


Real-space grid implementation of the projector augmented wave method
journal, January 2005


Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes
journal, June 2000


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries
journal, February 2006


Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O
journal, January 2005


Electrochemical AFM Observation of the HOPG Edge Plane in Ethylene Carbonate-Based Electrolytes Containing Film-Forming Additives
journal, January 2012

  • Domi, Yasuhiro; Ochida, Manabu; Tsubouchi, Shigetaka
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.059208jes

Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies
journal, July 2001


When Small is Big: The Role of Impurities in Electrocatalysis
journal, September 2015


Design principles for hydrogen evolution reaction catalyst materials
journal, November 2016


Work function, electronegativity, and electrochemical behaviour of metals
journal, September 1972


Surface science studies of model fuel cell electrocatalysts
journal, April 2002


Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


Oxygen reduction reaction on Pt(111): effects of bromide
journal, June 1999

  • Marković, N. M.; Gasteiger, H. A.; Grgur, B. N.
  • Journal of Electroanalytical Chemistry, Vol. 467, Issue 1-2
  • DOI: 10.1016/S0022-0728(99)00020-0

Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media
journal, October 2015

  • Staszak-Jirkovský, Jakub; Subbaraman, Ram; Strmcnik, Dusan
  • ACS Catalysis, Vol. 5, Issue 11
  • DOI: 10.1021/acscatal.5b01779

Effects of electrolyte-volume-to-electrode-area ratio on redox behaviors of graphite anodes for lithium-ion batteries
journal, September 2014


Electrode–solution interactions in Li-ion batteries: a short summary and new insights
journal, June 2003


Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive
journal, August 2015

  • Wang, Renheng; Li, Xinhai; Wang, Zhixing
  • Journal of Solid State Electrochemistry, Vol. 20, Issue 1
  • DOI: 10.1007/s10008-015-2998-1

Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Understanding Transition-Metal Dissolution Behavior in LiNi 0.5 Mn 1.5 O 4 High-Voltage Spinel for Lithium Ion Batteries
journal, July 2013

  • Pieczonka, Nicholas P. W.; Liu, Zhongyi; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp405158m

Comparison of Voltammetric Responses over the Cathodic Region in LiPF[sub 6] and LiBETI with and without HF
journal, January 2005

  • Lee, Hochun; Cho, Jeong-Ju; Kim, Jonggeol
  • Journal of The Electrochemical Society, Vol. 152, Issue 6
  • DOI: 10.1149/1.1914748

Review—SEI: Past, Present and Future
journal, January 2017

  • Peled, E.; Menkin, S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1441707jes