skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning of molecular properties: Locality and active learning

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]
  1. Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1433745
Grant/Contract Number:  
1150-06_2015
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Name: Journal of Chemical Physics Journal Volume: 148 Journal Issue: 24; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Gubaev, Konstantin, Podryabinkin, Evgeny V., and Shapeev, Alexander V. Machine learning of molecular properties: Locality and active learning. United States: N. p., 2018. Web. doi:10.1063/1.5005095.
Gubaev, Konstantin, Podryabinkin, Evgeny V., & Shapeev, Alexander V. Machine learning of molecular properties: Locality and active learning. United States. doi:https://doi.org/10.1063/1.5005095
Gubaev, Konstantin, Podryabinkin, Evgeny V., and Shapeev, Alexander V. Thu . "Machine learning of molecular properties: Locality and active learning". United States. doi:https://doi.org/10.1063/1.5005095.
@article{osti_1433745,
title = {Machine learning of molecular properties: Locality and active learning},
author = {Gubaev, Konstantin and Podryabinkin, Evgeny V. and Shapeev, Alexander V.},
abstractNote = {},
doi = {10.1063/1.5005095},
journal = {Journal of Chemical Physics},
number = 24,
volume = 148,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: https://doi.org/10.1063/1.5005095

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Comparing molecules and solids across structural and alchemical space
journal, January 2016

  • De, Sandip; Bartók, Albert P.; Csányi, Gábor
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/c6cp00415f

Machine learning of molecular electronic properties in chemical compound space
journal, September 2013


Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Genetic Optimization of Training Sets for Improved Machine Learning Models of Molecular Properties
journal, March 2017

  • Browning, Nicholas J.; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.7b00038

Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15m1054183

Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
journal, October 2016

  • Huang, Bing; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 145, Issue 16
  • DOI: 10.1063/1.4964627

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17
journal, November 2012

  • Ruddigkeit, Lars; van Deursen, Ruud; Blum, Lorenz C.
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 11
  • DOI: 10.1021/ci300415d

Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

Active learning of linearly parametrized interatomic potentials
journal, December 2017


A computational high-throughput search for new ternary superalloys
journal, January 2017


Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
journal, July 2015

  • Rupp, Matthias; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 16
  • DOI: 10.1021/acs.jpclett.5b01456