skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A porous, electrically conductive hexa-zirconium( iv ) metal–organic framework

Abstract

Engendering electrical conductivity in high-porosity metal–organic frameworks (MOFs) promises to unlock the full potential of MOFs for electrical energy storage, electrocatalysis, or integration of MOFs with conventional electronic materials. Here we report that a porous zirconium-node-containing MOF, NU-901, can be rendered electronically conductive by physically encapsulating C60, an excellent electron acceptor, within a fraction (ca. 60%) of the diamond-shaped cavities of the MOF. The cavities are defined by node-connected tetra-phenyl-carboxylated pyrene linkers, i.e. species that are excellent electron donors. The bulk electrical conductivity of the MOF is shown to increase from immeasurably low to 10-3 S cm-1, following fullerene incorporation. The observed conductivity originates from electron donor–acceptor interactions, i.e. charge-transfer interactions – a conclusion that is supported by density functional theory calculations and by the observation of a charge-transfer-derived band in the electronic absorption spectrum of the hybrid material. Notably, the conductive version of the MOF retains substantial nanoscale porosity and continues to display a sizable internal surface area, suggesting potential future applications that capitalize on the ability of the material to sorb molecular species.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Department of Chemistry, Northwestern University, Evanston, USA
  2. Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis
  3. Department of Chemistry, Northwestern University, Evanston, USA, Department of Chemistry
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1433741
Alternate Identifier(s):
OSTI ID: 1506652
Grant/Contract Number:  
FG02-17ER16362; SC0008688
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 9 Journal Issue: 19; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Goswami, Subhadip, Ray, Debmalya, Otake, Ken-ichi, Kung, Chung-Wei, Garibay, Sergio J., Islamoglu, Timur, Atilgan, Ahmet, Cui, Yuexing, Cramer, Christopher J., Farha, Omar K., and Hupp, Joseph T. A porous, electrically conductive hexa-zirconium( iv ) metal–organic framework. United Kingdom: N. p., 2018. Web. doi:10.1039/C8SC00961A.
Goswami, Subhadip, Ray, Debmalya, Otake, Ken-ichi, Kung, Chung-Wei, Garibay, Sergio J., Islamoglu, Timur, Atilgan, Ahmet, Cui, Yuexing, Cramer, Christopher J., Farha, Omar K., & Hupp, Joseph T. A porous, electrically conductive hexa-zirconium( iv ) metal–organic framework. United Kingdom. doi:10.1039/C8SC00961A.
Goswami, Subhadip, Ray, Debmalya, Otake, Ken-ichi, Kung, Chung-Wei, Garibay, Sergio J., Islamoglu, Timur, Atilgan, Ahmet, Cui, Yuexing, Cramer, Christopher J., Farha, Omar K., and Hupp, Joseph T. Mon . "A porous, electrically conductive hexa-zirconium( iv ) metal–organic framework". United Kingdom. doi:10.1039/C8SC00961A.
@article{osti_1433741,
title = {A porous, electrically conductive hexa-zirconium( iv ) metal–organic framework},
author = {Goswami, Subhadip and Ray, Debmalya and Otake, Ken-ichi and Kung, Chung-Wei and Garibay, Sergio J. and Islamoglu, Timur and Atilgan, Ahmet and Cui, Yuexing and Cramer, Christopher J. and Farha, Omar K. and Hupp, Joseph T.},
abstractNote = {Engendering electrical conductivity in high-porosity metal–organic frameworks (MOFs) promises to unlock the full potential of MOFs for electrical energy storage, electrocatalysis, or integration of MOFs with conventional electronic materials. Here we report that a porous zirconium-node-containing MOF, NU-901, can be rendered electronically conductive by physically encapsulating C60, an excellent electron acceptor, within a fraction (ca. 60%) of the diamond-shaped cavities of the MOF. The cavities are defined by node-connected tetra-phenyl-carboxylated pyrene linkers, i.e. species that are excellent electron donors. The bulk electrical conductivity of the MOF is shown to increase from immeasurably low to 10-3 S cm-1, following fullerene incorporation. The observed conductivity originates from electron donor–acceptor interactions, i.e. charge-transfer interactions – a conclusion that is supported by density functional theory calculations and by the observation of a charge-transfer-derived band in the electronic absorption spectrum of the hybrid material. Notably, the conductive version of the MOF retains substantial nanoscale porosity and continues to display a sizable internal surface area, suggesting potential future applications that capitalize on the ability of the material to sorb molecular species.},
doi = {10.1039/C8SC00961A},
journal = {Chemical Science},
number = 19,
volume = 9,
place = {United Kingdom},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C8SC00961A

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A route to high surface area, porosity and inclusion of large molecules in crystals
journal, February 2004

  • Chae, Hee K.; Siberio-Pérez, Diana Y.; Kim, Jaheon
  • Nature, Vol. 427, Issue 6974, p. 523-527
  • DOI: 10.1038/nature02311

Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide
journal, October 2015

  • Kornienko, Nikolay; Zhao, Yingbo; Kley, Christopher S.
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b08212

Rendering High Surface Area, Mesoporous Metal–Organic Frameworks Electronically Conductive
journal, March 2017

  • Wang, Timothy C.; Hod, Idan; Audu, Cornelius O.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 14
  • DOI: 10.1021/acsami.6b16834

Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation
journal, January 2014

  • Leong, Kirsty; Foster, Michael E.; Wong, Bryan M.
  • J. Mater. Chem. A, Vol. 2, Issue 10
  • DOI: 10.1039/C3TA14328G

Guest-Induced Emergent Properties in Metal–Organic Frameworks
journal, March 2015

  • Allendorf, Mark D.; Foster, Michael E.; Léonard, François
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 7
  • DOI: 10.1021/jz5026883

Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
journal, December 2009

  • Horcajada, Patricia; Chalati, Tamim; Serre, Christian
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2608

Computational Design of Functionalized Metal–Organic Framework Nodes for Catalysis
journal, December 2017


Supercapacitors of Nanocrystalline Metal–Organic Frameworks
journal, June 2014

  • Choi, Kyung Min; Jeong, Hyung Mo; Park, Jung Hyo
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn5027092

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials
journal, August 2010

  • Farha, Omar K.; Hupp, Joseph T.
  • Accounts of Chemical Research, Vol. 43, Issue 8, p. 1166-1175
  • DOI: 10.1021/ar1000617

Lowering Band Gap of an Electroactive Metal–Organic Framework via Complementary Guest Intercalation
journal, September 2017

  • Guo, Zhiyong; Panda, Dillip K.; Gordillo, Monica A.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 38
  • DOI: 10.1021/acsami.7b07292

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity
journal, August 2016

  • Le Ouay, Benjamin; Boudot, Mickael; Kitao, Takashi
  • Journal of the American Chemical Society, Vol. 138, Issue 32
  • DOI: 10.1021/jacs.6b05552

High Electrical Conductivity in Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 , a Semiconducting Metal–Organic Graphene Analogue
journal, April 2014

  • Sheberla, Dennis; Sun, Lei; Blood-Forsythe, Martin A.
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja502765n

Understanding band gaps of solids in generalized Kohn–Sham theory
journal, March 2017

  • Perdew, John P.; Yang, Weitao; Burke, Kieron
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 11
  • DOI: 10.1073/pnas.1621352114

Concentration Dependent Dimensionality of Resonance Energy Transfer in a Postsynthetically Doped Morphologically Homologous Analogue of UiO-67 MOF with a Ruthenium(II) Polypyridyl Complex
journal, June 2015

  • Maza, William A.; Padilla, Roberto; Morris, Amanda J.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b03071

Metal Organic Framework Catalysis: Quo vadis ?
journal, December 2013

  • Gascon, Jorge; Corma, Avelino; Kapteijn, Freek
  • ACS Catalysis, Vol. 4, Issue 2, p. 361-378
  • DOI: 10.1021/cs400959k

Mn 2 (2,5-disulfhydrylbenzene-1,4-dicarboxylate): A Microporous Metal–Organic Framework with Infinite (−Mn–S−) Chains and High Intrinsic Charge Mobility
journal, May 2013

  • Sun, Lei; Miyakai, Tomoyo; Seki, Shu
  • Journal of the American Chemical Society, Vol. 135, Issue 22
  • DOI: 10.1021/ja4037516

Charge separated states and singlet oxygen generation of mono and bis adducts of C60 and C70
journal, February 2016


Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites
journal, August 2008

  • Dincă, Mircea; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 47, Issue 36, p. 6766-6779
  • DOI: 10.1002/anie.200801163

Controlling charge separation in a novel donor–acceptor metal–organic framework via redox modulation
journal, January 2014

  • Leong, C. F.; Chan, B.; Faust, T. B.
  • Chem. Sci., Vol. 5, Issue 12
  • DOI: 10.1039/C4SC01551G

Modulating the electrical conductivity of metal–organic framework films with intercalated guest π-systems
journal, January 2016

  • Guo, Zhiyong; Panda, Dillip K.; Maity, Krishnendu
  • Journal of Materials Chemistry C, Vol. 4, Issue 5
  • DOI: 10.1039/C5TC02232K

Porous Field-Effect Transistors Based on a Semiconductive Metal–Organic Framework
journal, November 2016

  • Wu, Guodong; Huang, Jiahong; Zang, Ying
  • Journal of the American Chemical Society, Vol. 139, Issue 4
  • DOI: 10.1021/jacs.6b08511

Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal–organic frameworks
journal, January 2015

  • Nazarian, Dalar; Ganesh, P.; Sholl, David S.
  • Journal of Materials Chemistry A, Vol. 3, Issue 44
  • DOI: 10.1039/C5TA03864B

Chemiresistive Sensor Arrays from Conductive 2D Metal–Organic Frameworks
journal, October 2015

  • Campbell, Michael G.; Liu, Sophie F.; Swager, Timothy M.
  • Journal of the American Chemical Society, Vol. 137, Issue 43
  • DOI: 10.1021/jacs.5b09600

Conductive MOF electrodes for stable supercapacitors with high areal capacitance
journal, October 2016

  • Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4766

Toward Metal–Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures
journal, November 2016

  • Goswami, Subhadip; Ma, Lin; Martinson, Alex B. F.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 45
  • DOI: 10.1021/acsami.6b08552

Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks
journal, January 2015

  • Park, Sarah S.; Hontz, Eric R.; Sun, Lei
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja512437u

Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications
journal, February 2017


Contrasting Photodynamics between C 60 -Dithiapyrene and C 60 -Pyrene Dyads
journal, September 2007

  • Guldi, Dirk M.; Spänig, Fabian; Kreher, David
  • Chemistry - A European Journal, Vol. 14, Issue 1
  • DOI: 10.1002/chem.200700837

Zr-based metal–organic frameworks: design, synthesis, structure, and applications
journal, January 2016

  • Bai, Yan; Dou, Yibo; Xie, Lin-Hua
  • Chemical Society Reviews, Vol. 45, Issue 8
  • DOI: 10.1039/C5CS00837A

Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs
journal, August 2016


Predicting Band Gaps with Hybrid Density Functionals
journal, October 2016

  • Garza, Alejandro J.; Scuseria, Gustavo E.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 20
  • DOI: 10.1021/acs.jpclett.6b01807

Metal–Organic Frameworks for Light Harvesting and Photocatalysis
journal, November 2012

  • Wang, Jin-Liang; Wang, Cheng; Lin, Wenbin
  • ACS Catalysis, Vol. 2, Issue 12
  • DOI: 10.1021/cs3005874

Hybrid porous solids past, present, future
journal, January 2008

  • Férey, Gérard
  • Chem. Soc. Rev., Vol. 37, Issue 1, p. 191-214
  • DOI: 10.1039/B618320B

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
journal, September 2010

  • Farha, Omar K.; Özgür Yazaydın, A.; Eryazici, Ibrahim
  • Nature Chemistry, Vol. 2, Issue 11, p. 944-948
  • DOI: 10.1038/nchem.834

Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal–Organic Framework Compound
journal, February 2015

  • Hod, Idan; Bury, Wojciech; Gardner, Daniel M.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 4
  • DOI: 10.1021/acs.jpclett.5b00019

Computational development of the nanoporous materials genome
journal, July 2017


Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials
journal, April 2015

  • Nie, Xiaowa; Kulkarni, Ambarish; Sholl, David S.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 9
  • DOI: 10.1021/acs.jpclett.5b00298

Electric Transport Properties of Surface-Anchored Metal–Organic Frameworks and the Effect of Ferrocene Loading
journal, April 2015

  • Liu, Jianxi; Wächter, Tobias; Irmler, Andreas
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01792

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures
journal, January 2016

  • Bao, Zongbi; Chang, Ganggang; Xing, Huabin
  • Energy & Environmental Science, Vol. 9, Issue 12
  • DOI: 10.1039/C6EE01886F

Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism
journal, January 2014

  • Ahrenholtz, Spencer R.; Epley, Charity C.; Morris, Amanda J.
  • Journal of the American Chemical Society, Vol. 136, Issue 6
  • DOI: 10.1021/ja410684q

Tunable Electrical Conductivity in Metal-Organic Framework Thin-Film Devices
journal, December 2013

  • Talin, A. Alec; Centrone, Andrea; Ford, Alexandra C.
  • Science, Vol. 343, Issue 6166, p. 66-69
  • DOI: 10.1126/science.1246738

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics
journal, April 2017

  • Deria, Pravas; Yu, Jierui; Smith, Tanner
  • Journal of the American Chemical Society, Vol. 139, Issue 16
  • DOI: 10.1021/jacs.7b02188

Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

Synthesis and Stability of Tagged UiO-66 Zr-MOFs
journal, December 2010

  • Kandiah, Mathivathani; Nilsen, Merete Hellner; Usseglio, Sandro
  • Chemistry of Materials, Vol. 22, Issue 24
  • DOI: 10.1021/cm102601v

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Metal-Organic Frameworks as Cathode Materials for Li-O 2 Batteries
journal, February 2014


Metal–Organic Framework Thin Films Composed of Free-Standing Acicular Nanorods Exhibiting Reversible Electrochromism
journal, December 2013

  • Kung, Chung-Wei; Wang, Timothy Chiaan; Mondloch, Joseph E.
  • Chemistry of Materials, Vol. 25, Issue 24
  • DOI: 10.1021/cm403726v

Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism
journal, February 2013

  • Bon, Volodymyr; Senkovska, Irena; Baburin, Igor A.
  • Crystal Growth & Design, Vol. 13, Issue 3, p. 1231-1237
  • DOI: 10.1021/cg301691d

Energy Transfer Dynamics in Metal−Organic Frameworks
journal, September 2010

  • Kent, Caleb A.; Mehl, Brian P.; Ma, Liqing
  • Journal of the American Chemical Society, Vol. 132, Issue 37
  • DOI: 10.1021/ja102804s

Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant
journal, January 2018

  • Islamoglu, Timur; Ortuño, Manuel A.; Proussaloglou, Emmanuel
  • Angewandte Chemie, Vol. 130, Issue 7
  • DOI: 10.1002/ange.201712645

Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives
journal, January 2016


Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444

    Works referencing / citing this record:

    Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform
    journal, August 2018


    Incarceration of Iodine in a Pyrene‐Based Metal–Organic Framework
    journal, December 2018

    • Gładysiak, Andrzej; Nguyen, Tu N.; Spodaryk, Mariana
    • Chemistry – A European Journal
    • DOI: 10.1002/chem.201805073

    Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese
    journal, June 2019

    • Wang, Yi-Sen; Chen, Yu-Chuan; Li, Jun-Hong
    • European Journal of Inorganic Chemistry, Vol. 2019, Issue 26
    • DOI: 10.1002/ejic.201900676

    Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction
    journal, January 2019

    • Kuang, Xiaofei; Chen, Shanci; Meng, Lingyi
    • Chemical Communications, Vol. 55, Issue 11
    • DOI: 10.1039/c8cc10269d

    Metal–Organic Frameworks Toward Electrocatalytic Applications
    journal, June 2019

    • Li, Jun-Hong; Wang, Yi-Sen; Chen, Yu-Chuan
    • Applied Sciences, Vol. 9, Issue 12
    • DOI: 10.3390/app9122427