skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries

Abstract

All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results reveal that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.

Authors:
 [1];  [1];  [2]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering
  2. Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering. Energy Research Center
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Science Foundation (NSF)
OSTI Identifier:
1433677
Grant/Contract Number:  
EE0006860; TG-DMR130142
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 4; Journal Issue: 9; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zhu, Yizhou, He, Xingfeng, and Mo, Yifei. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. United States: N. p., 2015. Web. doi:10.1039/c5ta08574h.
Zhu, Yizhou, He, Xingfeng, & Mo, Yifei. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. United States. doi:10.1039/c5ta08574h.
Zhu, Yizhou, He, Xingfeng, and Mo, Yifei. Fri . "First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries". United States. doi:10.1039/c5ta08574h. https://www.osti.gov/servlets/purl/1433677.
@article{osti_1433677,
title = {First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries},
author = {Zhu, Yizhou and He, Xingfeng and Mo, Yifei},
abstractNote = {All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results reveal that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.},
doi = {10.1039/c5ta08574h},
journal = {Journal of Materials Chemistry. A},
number = 9,
volume = 4,
place = {United States},
year = {2015},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 118 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanoscale Interface Modification of LiCoO 2 by Al 2 O 3 Atomic Layer Deposition for Solid-State Li Batteries
journal, January 2012

  • Woo, Jae Ha; Trevey, James E.; Cavanagh, Andrew S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.085207jes

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage
journal, January 2015

  • Thangadurai, Venkataraman; Pinzaru, Dana; Narayanan, Sumaletha
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz501828v

Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Solid Electrolyte: the Key for High-Voltage Lithium Batteries
journal, October 2014

  • Li, Juchuan; Ma, Cheng; Chi, Miaofang
  • Advanced Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1002/aenm.201401408

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode
journal, June 2011

  • Kitaura, Hirokazu; Hayashi, Akitoshi; Tadanaga, Kiyoharu
  • Solid State Ionics, Vol. 192, Issue 1
  • DOI: 10.1016/j.ssi.2010.08.019

Progress and prospective of solid-state lithium batteries
journal, February 2013


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

All-solid-state lithium batteries with Li3PS4 glass as active material
journal, October 2015


Structural and Microstructural Studies of the Series La2/3−xLi3x□1/3−2xTiO3
journal, December 1996

  • Fourquet, J. L.; Duroy, H.; Crosnier-Lopez, M. P.
  • Journal of Solid State Chemistry, Vol. 127, Issue 2
  • DOI: 10.1006/jssc.1996.0385

Inorganic solid Li ion conductors: An overview
journal, June 2009


First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Neutron Diffraction Analysis of NASICON-type Li 1+ x Al x Ti 2- x P 3 O 12 : Neutron Diffraction Analysis of NASICON-type Li
journal, July 2014

  • Dashjav, Enkhtsetseg; Tietz, Frank
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 640, Issue 15
  • DOI: 10.1002/zaac.201400195

Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

Preparation, structure and ionic conductivity of lithium phosphide
journal, April 1989


Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries
journal, January 2011

  • Okumura, Toyoki; Nakatsutsumi, Takayuki; Ina, Toshiaki
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04366d

Electrochemical Characterizations of Commercial LiCoO[sub 2] Powders with Surface Modified by Li[sub 3]PO[sub 4] Nanoparticles
journal, January 2006

  • Jin, Y.; Li, N.; Chen, C. H.
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 6
  • DOI: 10.1149/1.2188081

A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets
journal, May 2015


High voltage stability of LiCoO2 particles with a nano-scale Lipon coating
journal, July 2011


Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission
journal, May 2015


Solid-state thin-film rechargeable batteries
journal, February 2005


Interfacial modification for high-power solid-state lithium batteries
journal, September 2008


Reduction of charge transfer resistance at the lithium phosphorus oxynitride/lithium cobalt oxide interface by thermal treatment
journal, August 2005


Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature
journal, April 2013


Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability
journal, April 2012


Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance
journal, March 2011


Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure
journal, March 2011


Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure
journal, February 2013


Crystal structure and phase transitions of the lithium ionic conductor Li3PS4
journal, February 2011


On the La2/3−xLi3xTiO3/Al2O3 composite solid-electrolyte for Li-ion conduction
journal, November 2013


Interfacial Observation between LiCoO 2 Electrode and Li 2 S−P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
journal, February 2010

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901819c

First-Order Localized-Electron Collective-Electron Transition in LaCo O 3
journal, March 1967


In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery
journal, August 2014


Crystal Structure of Fast Lithium-ion-conducting Cubic Li 7 La 3 Zr 2 O 12
journal, January 2011

  • Awaka, Junji; Takashima, Akira; Kataoka, Kunimitsu
  • Chemistry Letters, Vol. 40, Issue 1
  • DOI: 10.1246/cl.2011.60

A Battery Made from a Single Material
journal, April 2015


Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
journal, January 2010

  • Kotobuki, Masashi; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3474232

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Co 9 S 8 nanoflakes on graphene (Co 9 S 8 /G) nanocomposites for high performance supercapacitors
journal, January 2014

  • Ramachandran, Rajendran; Saranya, Murugan; Santhosh, Chella
  • RSC Adv., Vol. 4, Issue 40
  • DOI: 10.1039/C4RA01515K

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

Formation enthalpies by mixing GGA and GGA + U calculations
journal, July 2011


A high-throughput infrastructure for density functional theory calculations
journal, June 2011


An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor
journal, January 2015

  • Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja508723m

5 V Class All-Solid-State Composite Lithium Battery with Li[sub 3]PO[sub 4] Coated LiNi[sub 0.5]Mn[sub 1.5]O[sub 4]
journal, January 2003

  • Kobayashi, Yo; Miyashiro, Hajime; Takei, Katsuhito
  • Journal of The Electrochemical Society, Vol. 150, Issue 12
  • DOI: 10.1149/1.1619988

LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
journal, July 2007


Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
journal, October 2013

  • Hartmann, Pascal; Leichtweiss, Thomas; Busche, Martin R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4051275

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries
journal, December 2011

  • Ruzmetov, Dmitry; Oleshko, Vladimir P.; Haney, Paul M.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl204047z

Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55°C
journal, January 2012


On the Mechanism of Nonaqueous Li–O 2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries
journal, November 2012

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp306680f

Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte
journal, March 2012


Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate
journal, September 2001


Investigation of the solid-state electrolyte/cathode LiPON/LiCoO2 interface by photoelectron spectroscopy
journal, October 2010


Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery
journal, January 2011


Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x= 0; 0.3) prepared by mechanical activation
journal, January 2008


Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials
journal, August 2011


Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility
journal, January 2008

  • Deiseroth, Hans-Jörg; Kong, Shiao-Tong; Eckert, Hellmut
  • Angewandte Chemie International Edition, Vol. 47, Issue 4
  • DOI: 10.1002/anie.200703900

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Improvement of High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using LiCoO[sub 2] Coated with Li[sub 2]O–SiO[sub 2] Glasses
journal, January 2008

  • Sakuda, Atsushi; Kitaura, Hirokazu; Hayashi, Akitoshi
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 1
  • DOI: 10.1149/1.2795837

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Preparation and Electrical Properties of Some Thiospinels
journal, May 1965

  • Bouchard, R. J.; Russo, P. A.; Wold, A.
  • Inorganic Chemistry, Vol. 4, Issue 5
  • DOI: 10.1021/ic50027a019

    Works referencing / citing this record:

    Strain‐Stabilized Ceramic‐Sulfide Electrolytes
    journal, July 2019


    Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective
    journal, January 2019

    • Ghidiu, Michael; Ruhl, Justine; Culver, Sean P.
    • Journal of Materials Chemistry A, Vol. 7, Issue 30
    • DOI: 10.1039/c9ta04772g

    Strain‐Stabilized Ceramic‐Sulfide Electrolytes
    journal, July 2019


    Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective
    journal, January 2019

    • Ghidiu, Michael; Ruhl, Justine; Culver, Sean P.
    • Journal of Materials Chemistry A, Vol. 7, Issue 30
    • DOI: 10.1039/c9ta04772g