DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes

Abstract

The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemical stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.

Authors:
 [1];  [2];  [2];  [2];  [1]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering
  2. Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Science Foundation (NSF); US Army Research Office (ARO)
OSTI Identifier:
1433676
Alternate Identifier(s):
OSTI ID: 1433674
Grant/Contract Number:  
EE0006860; 1235719; TG-DMR130142; W911NF1510187
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 8; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; all-solid-state batteries; electrochemical stability windows; first-principles computation; interfaces; solid electrolytes

Citation Formats

Han, Fudong, Zhu, Yizhou, He, Xingfeng, Mo, Yifei, and Wang, Chunsheng. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. United States: N. p., 2016. Web. doi:10.1002/aenm.201501590.
Han, Fudong, Zhu, Yizhou, He, Xingfeng, Mo, Yifei, & Wang, Chunsheng. Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. United States. https://doi.org/10.1002/aenm.201501590
Han, Fudong, Zhu, Yizhou, He, Xingfeng, Mo, Yifei, and Wang, Chunsheng. Thu . "Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes". United States. https://doi.org/10.1002/aenm.201501590. https://www.osti.gov/servlets/purl/1433676.
@article{osti_1433676,
title = {Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes},
author = {Han, Fudong and Zhu, Yizhou and He, Xingfeng and Mo, Yifei and Wang, Chunsheng},
abstractNote = {The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk-type solid-state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemical stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte-carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li-garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high-performance solid-state batteries.},
doi = {10.1002/aenm.201501590},
journal = {Advanced Energy Materials},
number = 8,
volume = 6,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 128 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries
journal, October 2012


A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries
journal, February 2011

  • Aboulaich, Abelmaula; Bouchet, Renaud; Delaizir, Gaëlle
  • Advanced Energy Materials, Vol. 1, Issue 2
  • DOI: 10.1002/aenm.201000050

Ionic conductivity in Li 3 N single crystals
journal, June 1977

  • Alpen, U. v.; Rabenau, A.; Talat, G. H.
  • Applied Physics Letters, Vol. 30, Issue 12
  • DOI: 10.1063/1.89283

Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage
journal, January 2015

  • Thangadurai, Venkataraman; Pinzaru, Dana; Narayanan, Sumaletha
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 2
  • DOI: 10.1021/jz501828v

The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study
journal, December 2015


Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy
journal, October 2015


Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
journal, January 2015

  • Cheng, Lei; Chen, Wei; Kunz, Martin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am508111r

All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing
journal, September 2013


All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes
journal, September 2006


Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery
journal, July 2014

  • Haruyama, Jun; Sodeyama, Keitaro; Han, Liyuan
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm5016959

Interfacial Observation between LiCoO 2 Electrode and Li 2 S−P 2 S 5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy
journal, February 2010

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901819c

In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery
journal, August 2014


High lithium ionic conductivity in the garnet-type oxide Li7−XLa3(Zr2−X, NbX)O12 (X=0–2)
journal, March 2011


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

A Battery Made from a Single Material
journal, April 2015


Compatibility of Li[sub 7]La[sub 3]Zr[sub 2]O[sub 12] Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode
journal, January 2010

  • Kotobuki, Masashi; Munakata, Hirokazu; Kanamura, Kiyoshi
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3474232

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Enhancement of the High-Rate Capability of Solid-State Lithium Batteries by Nanoscale Interfacial Modification
journal, September 2006

  • Ohta, N.; Takada, K.; Zhang, L.
  • Advanced Materials, Vol. 18, Issue 17, p. 2226-2229
  • DOI: 10.1002/adma.200502604

Preparation, structure and ionic conductivity of lithium phosphide
journal, April 1989


Structure, ionic conductivity and electrochemical stability of Li2S–P2S5–LiI glass and glass–ceramic electrolytes
journal, March 2012


A high-throughput infrastructure for density functional theory calculations
journal, June 2011


An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor
journal, January 2015

  • Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja508723m

High performance silicon-based anodes in solid-state lithium batteries
journal, January 2014

  • Cervera, Rinlee B.; Suzuki, Naoki; Ohnishi, Tsuyoshi
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE43306D

Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON
journal, June 2008


LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
journal, July 2007


Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
journal, October 2013

  • Hartmann, Pascal; Leichtweiss, Thomas; Busche, Martin R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4051275

Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission
journal, May 2015


Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12
journal, February 2013


Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12
journal, January 2013


Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes
journal, January 2015

  • Chen, Hao Min; Maohua, Chen; Adams, Stefan
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 25
  • DOI: 10.1039/C5CP01841B

Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature
journal, April 2013


Improved Performance of All-Solid-State Lithium-Ion Batteries Using Nanosilicon Active Material with Multiwalled-Carbon-Nanotubes as a Conductive Additive
journal, January 2010

  • Trevey, James E.; Rason, Kavic W.; Stoldt, Conrad R.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 11
  • DOI: 10.1149/1.3479551

Thin-film lithium and lithium-ion batteries
journal, November 2000


Stability of Nb-Doped Cubic Li 7 La 3 Zr 2 O 12 with Lithium Metal
journal, January 2013

  • Ishiguro, K.; Nakata, Y.; Matsui, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.036310jes

Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal
journal, September 2014


Works referencing / citing this record:

Progress of the Interface Design in All-Solid-State Li-S Batteries
journal, March 2018

  • Yue, Junpei; Yan, Min; Yin, Ya-Xia
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201707533

Transport and Charge Carrier Chemistry in Lithium Sulfide
journal, December 2018

  • Lorger, Simon; Usiskin, Robert E.; Maier, Joachim
  • Advanced Functional Materials, Vol. 29, Issue 6
  • DOI: 10.1002/adfm.201807688

A High‐Performance Li–B–H Electrolyte for All‐Solid‐State Li Batteries
journal, February 2019

  • Lu, Fuqiang; Pang, Yuepeng; Zhu, Mengfei
  • Advanced Functional Materials, Vol. 29, Issue 15
  • DOI: 10.1002/adfm.201809219

Electro–Chemo–Mechanical Issues at the Interfaces in Solid‐State Lithium Metal Batteries
journal, April 2019


Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
journal, February 2018


Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes
journal, October 2018


Lithium-Graphite Paste: An Interface Compatible Anode for Solid-State Batteries
journal, January 2019

  • Duan, Jian; Wu, Wangyan; Nolan, Adelaide M.
  • Advanced Materials, Vol. 31, Issue 10
  • DOI: 10.1002/adma.201807243

Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High‐Voltage Lithium Metal Batteries
journal, January 2019


Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries
journal, August 2019


Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells
journal, January 2020


Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries
journal, November 2019


Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode
journal, March 2017


High-Performance All-Solid-State Lithium-Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes
journal, May 2017

  • Yao, Xiayin; Huang, Ning; Han, Fudong
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201602923

Suppressing Li Dendrite Formation in Li 2 S-P 2 S 5 Solid Electrolyte by LiI Incorporation
journal, March 2018

  • Han, Fudong; Yue, Jie; Zhu, Xiangyang
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703644

Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries
journal, April 2018

  • Park, Kern Ho; Bai, Qiang; Kim, Dong Hyeon
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800035

Sulfide Solid Electrolytes for Lithium Battery Applications
journal, August 2018

  • Lau, Jonathan; DeBlock, Ryan H.; Butts, Danielle M.
  • Advanced Energy Materials, Vol. 8, Issue 27
  • DOI: 10.1002/aenm.201800933

Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
journal, January 2019

  • Zhu, Yisi; Connell, Justin G.; Tepavcevic, Sanja
  • Advanced Energy Materials, Vol. 9, Issue 12
  • DOI: 10.1002/aenm.201803440

A High‐Throughput Search for Functionally Stable Interfaces in Sulfide Solid‐State Lithium Ion Conductors
journal, April 2019

  • Fitzhugh, William; Wu, Fan; Ye, Luhan
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201900807

Interfacial Incompatibility and Internal Stresses in All‐Solid‐State Lithium Ion Batteries
journal, August 2019

  • He, Yanming; Lu, Chuanyang; Liu, Shan
  • Advanced Energy Materials, Vol. 9, Issue 36
  • DOI: 10.1002/aenm.201901810

Inside or Outside: Origin of Lithium Dendrite Formation of All Solid‐State Electrolytes
journal, September 2019

  • Mo, Fangjie; Ruan, Jiafeng; Sun, Shuxian
  • Advanced Energy Materials, Vol. 9, Issue 40
  • DOI: 10.1002/aenm.201902123

Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface
journal, September 2018


Chemistry Design Towards a Stable Sulfide‐Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
journal, April 2019


Ice as Solid Electrolyte To Conduct Various Kinds of Ions
journal, July 2019


Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface
journal, September 2018

  • Gao, Yue; Wang, Daiwei; Li, Yuguang C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 41
  • DOI: 10.1002/anie.201807304

Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li 4 Cu 8 Ge 3 S 12
journal, April 2019

  • Wang, Yingqi; Lü, Xujie; Zheng, Chong
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201901739

Lithium Chlorides and Bromides as Promising Solid‐State Chemistries for Fast Ion Conductors with Good Electrochemical Stability
journal, June 2019

  • Wang, Shuo; Bai, Qiang; Nolan, Adelaide M.
  • Angewandte Chemie International Edition, Vol. 58, Issue 24
  • DOI: 10.1002/anie.201901938

Zirconium‐Based Materials for Electrochemical Energy Storage
journal, February 2019


Reducing the Interfacial Resistance in All‐Solid‐State Lithium Batteries Based on Oxide Ceramic Electrolytes
journal, April 2019


A Crosslinked Polyethyleneglycol Solid Electrolyte Dissolving Lithium Bis(trifluoromethylsulfonyl)imide for Rechargeable Lithium Batteries
journal, September 2019


Strain‐Stabilized Ceramic‐Sulfide Electrolytes
journal, July 2019


Design Principles of the Anode–Electrolyte Interface for All Solid‐State Lithium Metal Batteries
journal, October 2019


Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries
journal, May 2018


Designing interfaces in energy materials applications with first-principles calculations
journal, February 2019

  • Butler, Keith T.; Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0160-9

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes
journal, January 2020

  • Schwietert, Tammo K.; Arszelewska, Violetta A.; Wang, Chao
  • Nature Materials, Vol. 19, Issue 4
  • DOI: 10.1038/s41563-019-0576-0

Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


Tailored Li 2 S–P 2 S 5 glass-ceramic electrolyte by MoS 2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries
journal, January 2017

  • Xu, Ruo-chen; Xia, Xin-hui; Wang, Xiu-li
  • Journal of Materials Chemistry A, Vol. 5, Issue 6
  • DOI: 10.1039/c6ta10142a

A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture
journal, January 2017

  • Duchêne, L.; Kühnel, R. -S.; Rentsch, D.
  • Chemical Communications, Vol. 53, Issue 30
  • DOI: 10.1039/c7cc00794a

An insight into intrinsic interfacial properties between Li metals and Li 10 GeP 2 S 12 solid electrolytes
journal, January 2017

  • Chen, Bingbing; Ju, Jiangwei; Ma, Jun
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 46
  • DOI: 10.1039/c7cp05253g

Tuning mobility and stability of lithium ion conductors based on lattice dynamics
journal, January 2018

  • Muy, Sokseiha; Bachman, John C.; Giordano, Livia
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/c7ee03364h

Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries
journal, January 2017

  • Sheng, Ouwei; Jin, Chengbin; Luo, Jianmin
  • Journal of Materials Chemistry A, Vol. 5, Issue 25
  • DOI: 10.1039/c7ta03699j

Anti-perovskite cathodes for lithium batteries
journal, January 2018

  • Lu, Ziheng; Ciucci, Francesco
  • Journal of Materials Chemistry A, Vol. 6, Issue 12
  • DOI: 10.1039/c7ta11074j

Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density
journal, January 2018

  • Wang, Longlong; Chen, Bingbing; Ma, Jun
  • Chemical Society Reviews, Vol. 47, Issue 17
  • DOI: 10.1039/c8cs00322j

New horizons for inorganic solid state ion conductors
journal, January 2018

  • Zhang, Zhizhen; Shao, Yuanjun; Lotsch, Bettina
  • Energy & Environmental Science, Vol. 11, Issue 8
  • DOI: 10.1039/c8ee01053f

Prospects of production technologies and manufacturing costs of oxide-based all-solid-state lithium batteries
journal, January 2019

  • Schnell, Joscha; Tietz, Frank; Singer, Célestine
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/c8ee02692k

A Li + conductive metal organic framework electrolyte boosts the high-temperature performance of dendrite-free lithium batteries
journal, January 2019

  • Chen, Nan; Li, Yuejiao; Dai, Yujuan
  • Journal of Materials Chemistry A, Vol. 7, Issue 16
  • DOI: 10.1039/c8ta12539b

A more stable lithium anode by mechanical constriction for solid state batteries
journal, January 2020

  • Su, Yibo; Ye, Luhan; Fitzhugh, William
  • Energy & Environmental Science, Vol. 13, Issue 3
  • DOI: 10.1039/c9ee04007b

A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries
journal, January 2019

  • Wu, Hailong; Wang, Jiali; Zhao, Yu
  • Sustainable Energy & Fuels, Vol. 3, Issue 10
  • DOI: 10.1039/c9se00361d

A Li 2 CuPS 4 superionic conductor: a new sulfide-based solid-state electrolyte
journal, January 2019

  • Xu, Zhenming; Chen, Ronghan; Zhu, Hong
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta01317b

Acid induced conversion towards a robust and lithiophilic interface for Li–Li 7 La 3 Zr 2 O 12 solid-state batteries
journal, January 2019

  • Ruan, Yadong; Lu, Yang; Huang, Xiao
  • Journal of Materials Chemistry A, Vol. 7, Issue 24
  • DOI: 10.1039/c9ta01911a

The critical role of oxygen-evolution kinetics in the electrochemical stability of oxide superionic conductors
journal, January 2019

  • Wang, Tiantian; Qiu, Wujie; Feng, Qi
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04841c

The effects of mechanical constriction on the operation of sulfide based solid-state batteries
journal, January 2019

  • Fitzhugh, William; Ye, Luhan; Li, Xin
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05248h

Comparison of computational methods for the electrochemical stability window of solid-state electrolyte materials
journal, January 2020

  • Binninger, Tobias; Marcolongo, Aris; Mottet, Matthieu
  • Journal of Materials Chemistry A, Vol. 8, Issue 3
  • DOI: 10.1039/c9ta09401f

Defect chemistry of disordered solid-state electrolyte Li 10 GeP 2 S 12
journal, January 2020

  • Gorai, Prashun; Long, Hai; Jones, Eric
  • Journal of Materials Chemistry A, Vol. 8, Issue 7
  • DOI: 10.1039/c9ta10964a

Recent progress for all solid state battery using sulfide and oxide solid electrolytes
journal, January 2019

  • Shoji, Mao; Cheng, Eric Jianfeng; Kimura, Takeshi
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 10
  • DOI: 10.1088/1361-6463/aaf7e2

Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles
journal, May 2017


Dense freeze-cast Li 7 La 3 Zr 2 O 12 solid electrolytes with oriented open porosity and contiguous ceramic scaffold
journal, August 2018

  • Buannic, Lucienne; Naviroj, Maninpat; Miller, Sarah M.
  • Journal of the American Ceramic Society, Vol. 102, Issue 3
  • DOI: 10.1111/jace.15938

An Interdisciplinary View of Interfaces: Perspectives Regarding Emergent Phase Formation
journal, October 2017

  • Brinkman, Kyle S.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 15, Issue 1
  • DOI: 10.1115/1.4037583

Highly efficient electrochemical reforming of CH 4 /CO 2 in a solid oxide electrolyser
journal, March 2018


Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
journal, December 2018


Communication—Li/Li 7 La 3 Zr 2 O 12 Interfacial Modification by Constructing a Layer of Cu-Li Alloy
journal, January 2019

  • Xiang, Xing; Cao, Shiyu; Chen, Fei
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0651913jes

Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate
journal, January 2020

  • Wang, Michael J.; Wolfenstine, Jeffrey B.; Sakamoto, Jeff
  • Advanced Functional Materials, Vol. 30, Issue 10
  • DOI: 10.1002/adfm.201909140

Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization
journal, October 2018

  • Dai, Jiaqi; Yang, Chunpeng; Wang, Chengwei
  • Advanced Materials, Vol. 30, Issue 48
  • DOI: 10.1002/adma.201802068

Sulfur Redox Reactions at Working Interfaces in Lithium-Sulfur Batteries: A Perspective
journal, January 2019

  • Yuan, Hong; Peng, Hong-Jie; Huang, Jia-Qi
  • Advanced Materials Interfaces, Vol. 6, Issue 4
  • DOI: 10.1002/admi.201802046

Lithium Chlorides and Bromides as Promising Solid‐State Chemistries for Fast Ion Conductors with Good Electrochemical Stability
journal, May 2019

  • Wang, Shuo; Bai, Qiang; Nolan, Adelaide M.
  • Angewandte Chemie, Vol. 131, Issue 24
  • DOI: 10.1002/ange.201901938

Metal−Organic Frameworks for High‐Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives
journal, April 2019

  • Zhang, Xiahui; Dong, Panpan; Song, Min‐Kyu
  • Batteries & Supercaps, Vol. 2, Issue 7
  • DOI: 10.1002/batt.201900012

Fast Charging Lithium Batteries: Recent Progress and Future Prospects
journal, March 2019


Graphitic Hollow Nanocarbon as a Promising Conducting Agent for Solid‐State Lithium Batteries
journal, March 2019


Progress in the Development of Sodium-Ion Solid Electrolytes
journal, September 2017


Advanced sulfide solid electrolyte by core-shell structural design
journal, October 2018


Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems
journal, January 2016

  • Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 40
  • DOI: 10.1039/c6ta05439k

LiAl 5 O 8 as a potential coating material in lithium-ion batteries: a first principles study
journal, January 2019

  • Mo, Sijia; Zhang, Bingkai; Zhang, Kecheng
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 25
  • DOI: 10.1039/c9cp02650a

Solution-based synthesis of lithium thiophosphate superionic conductors for solid-state batteries: a chemistry perspective
journal, January 2019

  • Ghidiu, Michael; Ruhl, Justine; Culver, Sean P.
  • Journal of Materials Chemistry A, Vol. 7, Issue 30
  • DOI: 10.1039/c9ta04772g

Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO 2 batteries
journal, January 2020

  • Liang, Jianneng; Sun, Yipeng; Zhao, Yang
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta08607b

Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives
journal, December 2018


An in situ element permeation constructed high endurance Li–LLZO interface at high current densities
journal, January 2018

  • Lu, Yang; Huang, Xiao; Ruan, Yadong
  • Journal of Materials Chemistry A, Vol. 6, Issue 39
  • DOI: 10.1039/c8ta07241h

Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode
text, January 2017

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Digital Repository at the University of Maryland
  • DOI: 10.13016/m2p26q396

Ionic conduction mechanism of a lithium superionic argyrodite in the Li–Al–Si–S–O system
journal, January 2020