DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Caloric effects in ferroic materials

Abstract

The fundamentals and applications of ferroic materials$$-$$ferromagnetic, ferroelectric, and ferroelastic$$-$$are common subjects discussed in just about every graduate course related to functional materials. Looking beyond today’s traditional uses, such as in permanent magnets, capacitors, and shape-memory alloys, there are worthwhile and interesting questions common to the caloric properties of these ferroic materials. Can ferroic materials be used in a cooling cycle? Why are these materials susceptible to external fields? Which combination of properties is required to make some of them suitable for efficient cooling and heat pumping? We address these questions in this introduction to ferroic cooling, which comprises magnetocaloric, electrocaloric, elastocaloric and barocaloric approaches and combinations thereof (i.e., multicalorics). These are addressed in greater detail in the articles in this issue.

Authors:
 [1];  [2]
  1. Leibniz Inst. for Solid State and Materials Research (IFW), Dresden (Germany)
  2. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE; German Research Foundation (DFG)
OSTI Identifier:
1433675
Report Number(s):
IS-J-9637
Journal ID: ISSN 0883-7694; applab; PII: S0883769418000660
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
MRS Bulletin
Additional Journal Information:
Journal Volume: 43; Journal Issue: 04; Journal ID: ISSN 0883-7694
Publisher:
Materials Research Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Fahler, Sebastian, and Pecharsky, Vitalij K. Caloric effects in ferroic materials. United States: N. p., 2018. Web. doi:10.1557/mrs.2018.66.
Fahler, Sebastian, & Pecharsky, Vitalij K. Caloric effects in ferroic materials. United States. https://doi.org/10.1557/mrs.2018.66
Fahler, Sebastian, and Pecharsky, Vitalij K. Sun . "Caloric effects in ferroic materials". United States. https://doi.org/10.1557/mrs.2018.66. https://www.osti.gov/servlets/purl/1433675.
@article{osti_1433675,
title = {Caloric effects in ferroic materials},
author = {Fahler, Sebastian and Pecharsky, Vitalij K.},
abstractNote = {The fundamentals and applications of ferroic materials$-$ferromagnetic, ferroelectric, and ferroelastic$-$are common subjects discussed in just about every graduate course related to functional materials. Looking beyond today’s traditional uses, such as in permanent magnets, capacitors, and shape-memory alloys, there are worthwhile and interesting questions common to the caloric properties of these ferroic materials. Can ferroic materials be used in a cooling cycle? Why are these materials susceptible to external fields? Which combination of properties is required to make some of them suitable for efficient cooling and heat pumping? We address these questions in this introduction to ferroic cooling, which comprises magnetocaloric, electrocaloric, elastocaloric and barocaloric approaches and combinations thereof (i.e., multicalorics). These are addressed in greater detail in the articles in this issue.},
doi = {10.1557/mrs.2018.66},
journal = {MRS Bulletin},
number = 04,
volume = 43,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2018},
month = {Sun Apr 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: Schematic illustration of the ferroic cooling cycle. (a) The field is applied on a ferroic material to induce a phase transition. For a magnetocaloric material this is a magnetic field, for ferroelectric materials an electric field, for ferroelastic shapememory alloys a mechanical stress field, and for barocaloric materialsmore » hydrostatic pressure. In the vicinity of the transition temperature, these fields increase the temperature of the ferroic material. (b) Heat is released to the external reservoir, which reduces the material’s temperature to ambient. (c) The field is switched off, which reduces the temperature of the ferroic material. (d) The sample is connected to a cold reservoir, extracting heat and closing the ferroic cooling cycle.« less

Save / Share:

Works referenced in this record:

Electrocaloric effects in multilayer capacitors for cooling applications
text, January 2018

  • Moya Raposo, Xavier; Defay, E.; Mathur, Neil
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.25038

Extraordinary induction heating effect near the first order Curie transition
journal, October 2014

  • Barati, M. R.; Selomulya, C.; Sandeman, K. G.
  • Applied Physics Letters, Vol. 105, Issue 16
  • DOI: 10.1063/1.4900557

Caloric materials near ferroic phase transitions
journal, April 2014

  • Moya, X.; Kar-Narayan, S.; Mathur, N. D.
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3951

Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy
journal, April 2010

  • Mañosa, Lluís; González-Alonso, David; Planes, Antoni
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2731

Magnetic heat pumping near room temperature
journal, August 1976

  • Brown, G. V.
  • Journal of Applied Physics, Vol. 47, Issue 8
  • DOI: 10.1063/1.323176

The Direct Conversion of Heat to Electricity Using Multiferroic Alloys
journal, December 2010

  • Srivastava, Vijay; Song, Yintao; Bhatti, Kanwal
  • Advanced Energy Materials, Vol. 1, Issue 1
  • DOI: 10.1002/aenm.201000048

Multicaloric materials and effects
text, January 2018

  • Stern-Taulats, E.; Castán, T.; Mañosa, L.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.25043

Thermodynamics of multicaloric effects in multiferroics
journal, April 2014


High-Performance Thermomagnetic Generators Based on Heusler Alloy Films
journal, November 2016

  • Gueltig, Marcel; Wendler, Frank; Ossmer, Hinnerk
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201601879

Dielektrische Eigenschaften der Seignettesalzkristalle
journal, March 1930

  • Kobeko, P.; Kurtschatov, J.
  • Zeitschrift f�r Physik, Vol. 66, Issue 3-4
  • DOI: 10.1007/BF01392900

The evolution of magnetocaloric heat-pump devices
journal, April 2018

  • Zimm, Carl; Boeder, Andre; Mueller, Bryant
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.71

Multicaloric materials and effects
journal, April 2018

  • Stern-Taulats, Enric; Castán, Teresa; Mañosa, Lluís
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.72

Developments in magnetocaloric refrigeration
journal, November 2005


Overcoming fatigue through compression for advanced elastocaloric cooling
journal, April 2018


Caloric Effects in Ferroic Materials: New Concepts for Cooling
journal, February 2012

  • Fähler, Sebastian; Rößler, Ulrich K.; Kastner, Oliver
  • Advanced Engineering Materials, Vol. 14, Issue 1-2
  • DOI: 10.1002/adem.201290005

Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound
journal, September 2011

  • Mañosa, Lluís; González-Alonso, David; Planes, Antoni
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1606

Some symmetry aspects of ferroics and single phase multiferroics *
journal, October 2008


Electrocaloric effects in multilayer capacitors for cooling applications
journal, April 2018

  • Moya, Xavier; Defay, Emmanuel; Mathur, Neil D.
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.68

Caloric Effects in Ferroic Materials: New Concepts for Cooling
journal, November 2011

  • Fähler, Sebastian; Rößler, Ulrich K.; Kastner, Oliver
  • Advanced Engineering Materials, Vol. 14, Issue 1-2
  • DOI: 10.1002/adem.201100178

Magnetocaloric materials for refrigeration near room temperature
journal, April 2018

  • Waske, Anja; Gruner, Markus E.; Gottschall, Tino
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.69

Magnetocaloric Materials
journal, August 2000


High-performance elastocaloric materials for the engineering of bulk- and micro-cooling devices
journal, April 2018

  • Frenzel, Jan; Eggeler, Gunther; Quandt, Eckhard
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.67

Caloric materials near ferroic phase transitions
journalarticle, January 2014


Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys
journal, May 2005

  • Krenke, Thorsten; Duman, Eyüp; Acet, Mehmet
  • Nature Materials, Vol. 4, Issue 6
  • DOI: 10.1038/nmat1395

Works referencing / citing this record:

Caloric Effects in Ferroic Materials: New Concepts for Cooling
journal, August 2018


Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions
journal, January 2019

  • Zhao, Chunlin; Yang, Junlin; Huang, Yanli
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta10164k

Large electrocaloric effect over a wide temperature range in BaTiO 3 -modified lead-free ceramics
journal, January 2019

  • Zhao, Luo; Ke, Xiaoqin; Zhou, Zhijian
  • Journal of Materials Chemistry C, Vol. 7, Issue 5
  • DOI: 10.1039/c8tc06110f

A Novel Option for Waste Tire Rubber Reutilization: Refrigerant in Solid-State Cooling Devices
preprint, January 2019


How to quantify isotropic negative thermal expansion: magnitude, range, or both?
journal, January 2019

  • Coates, Chloe S.; Goodwin, Andrew L.
  • Materials Horizons, Vol. 6, Issue 2
  • DOI: 10.1039/c8mh01065j

Probing the Martensitic Microstructure of Magnetocaloric Heusler Films by Synchrotron Diffraction
journal, July 2018

  • Schwabe, Stefan; Schleicher, Benjamin; Niemann, Robert
  • Energy Technology, Vol. 6, Issue 8
  • DOI: 10.1002/ente.201800175

Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics
journal, January 2019

  • Kumar, Ajeet; Thakre, Atul; Jeong, Dae-Yong
  • Journal of Materials Chemistry C, Vol. 7, Issue 23
  • DOI: 10.1039/c9tc01525f

Figures / Tables found in this record:

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.