skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on March 19, 2019

Title: Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices

The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v. The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional to v 2. Here, to minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.
Authors:
 [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics
Publication Date:
Report Number(s):
IS-J-9634
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:
AC02-07CH11358
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 9; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1433672
Alternate Identifier(s):
OSTI ID: 1426832