skip to main content


Title: Novel mechanisms for solid-state processing and grain growth with microstructure alignment in alnico-8 based permanent magnets

An estimated 750,000 new hybrid electric and plug-in battery vehicles, most with permanent magnet synchronous alternating current (PMAC) drive motors, took to the road in 2016 alone. Accompanied by 40% year over year growth in the EV market significant challenges exist in producing large quantities of permanent magnets (on the order of tens of millions) for reliable, low-cost traction motors [IE Agency, Energy Technology Perspectives (2017)]. Since the rare earth permanent magnet (REPM) market is essentially 100% net import reliant in the United States and has proven to have an unstable cost and supply structure in recent years, a replacement RE-free PM material must be designed or selected, fully developed, and implemented. Alnico, with its high saturation magnetization and excellent thermal stability, appears to be uniquely suited for this task. Further, while alnico typically has been considered a relatively low coercivity hard magnet, strides have been made to increase the coercivity to levels suitable for traction drive motors [W Tang, IEEE Trans. Magn., 51 (2015)]. If a simple non-cast approach for achieving near [001] easy axis grain aligned permanent magnets can be found, this would allow massproduced final-shape anisotropic high energy product magnets suitable for usage in compact high RPMmore » rotor designs. Therefore, a powder metallurgical approach is being explored that uses classic compression molding with “de-bind and sinter” methods, where a novel applied uniaxial loading, and an applied magnetic field may create final-shape magnets with highly textured resulting microstructures by two different mechanisms. Results indicate a positive correlation between applied uniaxial load and resulting texture (Fig. 1), along with benefits from using an applied magnetic field for improved texture, as well. Lastly, the apparent mechanisms and resulting properties will be described using closed loop hysteresisgraph measurements, EBSD orientation mapping, and high-resolution SEM.« less
ORCiD logo [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ;  [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States)
  2. Ames Lab., Ames, IA (United States)
Publication Date:
Report Number(s):
Journal ID: ISSN 2158-3226
Grant/Contract Number:
Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 8; Journal Issue: 5; Journal ID: ISSN 2158-3226
American Institute of Physics (AIP)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
OSTI Identifier: