skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A sub-sampled approach to extremely low-dose STEM

Abstract

The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e-2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observations by experimentally imaging the node distribution in a metal-organic framework.

Authors:
 [1];  [2];  [3];  [4];  [5];  [4];  [6];  [5]
  1. OptimalSensing, Southlake, TX (United States); Duke Univ., Durham, NC (United States)
  2. Rice Univ., Houston, TX (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Liverpool (United Kingdom)
  6. Duke Univ., Durham, NC (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1433504
Report Number(s):
PNNL-SA-126577
Journal ID: ISSN 0003-6951; TRN: US1802664
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 4; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Stevens, A., Luzi, L., Yang, H., Kovarik, L., Mehdi, B. L., Liyu, A., Gehm, M. E., and Browning, N. D. A sub-sampled approach to extremely low-dose STEM. United States: N. p., 2018. Web. doi:10.1063/1.5016192.
Stevens, A., Luzi, L., Yang, H., Kovarik, L., Mehdi, B. L., Liyu, A., Gehm, M. E., & Browning, N. D. A sub-sampled approach to extremely low-dose STEM. United States. doi:10.1063/1.5016192.
Stevens, A., Luzi, L., Yang, H., Kovarik, L., Mehdi, B. L., Liyu, A., Gehm, M. E., and Browning, N. D. Mon . "A sub-sampled approach to extremely low-dose STEM". United States. doi:10.1063/1.5016192. https://www.osti.gov/servlets/purl/1433504.
@article{osti_1433504,
title = {A sub-sampled approach to extremely low-dose STEM},
author = {Stevens, A. and Luzi, L. and Yang, H. and Kovarik, L. and Mehdi, B. L. and Liyu, A. and Gehm, M. E. and Browning, N. D.},
abstractNote = {The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e-/Å2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observations by experimentally imaging the node distribution in a metal-organic framework.},
doi = {10.1063/1.5016192},
journal = {Applied Physics Letters},
number = 4,
volume = 112,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Representative reconstructions for a dose of 10 e-/Å2. The acquisition images have white pixels for electron counts greater than 0. Resolution and contrast metrics are shown in Table I. About 1% of the acquisition pixels detect an electron.

Save / Share:

Works referenced in this record:

Incoherent imaging using dynamically scattered coherent electrons
journal, June 1999


The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images
journal, October 2013


Improved Compressed Sensing-Based Algorithm for Sparse-View CT Image Reconstruction
journal, January 2013

  • Zhu, Zangen; Wahid, Khan; Babyn, Paul
  • Computational and Mathematical Methods in Medicine, Vol. 2013
  • DOI: 10.1155/2013/185750

Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework
journal, July 2017

  • Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b02936

Current status and future directions for in situ transmission electron microscopy
journal, November 2016


Amphoteric doping of praseodymium Pr3+ in SrTiO3 grain boundaries
journal, March 2015

  • Yang, H.; Lee, H. S.; Kotula, P. G.
  • Applied Physics Letters, Vol. 106, Issue 12
  • DOI: 10.1063/1.4916223

Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires
journal, July 2017

  • Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b04997

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
journal, February 2006

  • Candes, E.J.; Romberg, J.; Tao, T.
  • IEEE Transactions on Information Theory, Vol. 52, Issue 2, p. 489-509
  • DOI: 10.1109/TIT.2005.862083

Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy
journal, February 2008


Movies of Ice-Embedded Particles Enhance Resolution in Electron Cryo-Microscopy
journal, November 2012


Bottom-up construction of a superstructure in a porous uranium-organic crystal
journal, April 2017

  • Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.
  • Science, Vol. 356, Issue 6338
  • DOI: 10.1126/science.aam7851

Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
journal, May 2013

  • Li, Xueming; Mooney, Paul; Zheng, Shawn
  • Nature Methods, Vol. 10, Issue 6
  • DOI: 10.1038/nmeth.2472

Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery
journal, July 2013


Implementing an accurate and rapid sparse sampling approach for low-dose atomic resolution STEM imaging
journal, October 2016

  • Kovarik, L.; Stevens, A.; Liyu, A.
  • Applied Physics Letters, Vol. 109, Issue 16
  • DOI: 10.1063/1.4965720

Compressed sensing
journal, April 2006


Electron microscopy image enhanced
journal, April 1998

  • Haider, Maximilian; Uhlemann, Stephan; Schwan, Eugen
  • Nature, Vol. 392, Issue 6678
  • DOI: 10.1038/33823

Movie-mode dynamic electron microscopy
journal, January 2015

  • LaGrange, Thomas; Reed, Bryan W.; Masiel, Daniel J.
  • MRS Bulletin, Vol. 40, Issue 1
  • DOI: 10.1557/mrs.2014.282

Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy
journal, February 2017

  • Zhu, Yihan; Ciston, Jim; Zheng, Bin
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4852

Quantitative Atomic Resolution Scanning Transmission Electron Microscopy
journal, May 2008


Atomic-Resolution Imaging with a Sub-50-pm Electron Probe
journal, March 2009


Statistical bias in isotope ratios
journal, January 2013

  • Coath, Christopher D.; Steele, Robert C. J.; Lunnon, W. Fred
  • J. Anal. At. Spectrom., Vol. 28, Issue 1
  • DOI: 10.1039/C2JA10205F

Directed Growth of Electroactive Metal-Organic Framework Thin Films Using Electrophoretic Deposition
journal, July 2014

  • Hod, Idan; Bury, Wojciech; Karlin, David M.
  • Advanced Materials, Vol. 26, Issue 36
  • DOI: 10.1002/adma.201401940

Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy
journal, February 2011

  • Ishikawa, Ryo; Okunishi, Eiji; Sawada, Hidetaka
  • Nature Materials, Vol. 10, Issue 4
  • DOI: 10.1038/nmat2957

Applying compressive sensing to TEM video: a substantial frame rate increase on any camera
journal, August 2015

  • Stevens, Andrew; Kovarik, Libor; Abellan, Patricia
  • Advanced Structural and Chemical Imaging, Vol. 1, Issue 10
  • DOI: 10.1186/s40679-015-0009-3

Compressed sensing electron tomography
journal, August 2013


Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM
journal, February 2015


Towards the low-dose characterization of beam sensitive nanostructures via implementation of sparse image acquisition in scanning transmission electron microscopy
journal, February 2017

  • Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.
  • Measurement Science and Technology, Vol. 28, Issue 4
  • DOI: 10.1088/1361-6501/aa57df

Sub-ångstrom resolution using aberration corrected electron optics
journal, August 2002

  • Batson, P. E.; Dellby, N.; Krivanek, O. L.
  • Nature, Vol. 418, Issue 6898
  • DOI: 10.1038/nature00972

Towards a molecular understanding of shape selectivity
journal, February 2008


Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite
journal, May 2010

  • Ortalan, Volkan; Uzun, Alper; Gates, Bruce C.
  • Nature Nanotechnology, Vol. 5, Issue 7
  • DOI: 10.1038/nnano.2010.92

    Works referencing / citing this record:

    Automating material image analysis for material discovery
    journal, April 2019


    Automating material image analysis for material discovery
    journal, April 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.