DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen

Abstract

Abstract Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O 2 batteries, and are believed to form and decompose reversibly in metal‐O 2 /CO 2 cells. In these cathodes, Li 2 CO 3 decomposes to CO 2 when exposed to potentials above 3.8 V vs. Li/Li + . However, O 2 evolution, as would be expected according to the decomposition reaction 2 Li 2 CO 3 →4 Li + +4 e +2 CO 2 +O 2 , is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen ( 1 O 2 ) forms upon oxidizing Li 2 CO 3 in an aprotic electrolyte and therefore does not evolve as O 2 . These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1 O 2 in metal‐O 2 batteries, question the possibility of a reversible metal‐O 2 /CO 2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li 2 CO 3 .

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Institute for Chemistry and Technology of Materials Graz University of Technology Stremayrgasse 9 8010 Graz Austria
  2. Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory, Department of Chemical and Biomolecular Engineering University of California – Berkeley Berkeley CA 94720 USA
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1433266
Alternate Identifier(s):
OSTI ID: 1433267; OSTI ID: 1460317
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 57 Journal Issue: 19; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; electrochemistry; lithium batteries; lithium carbonate; reaction mechanisms; singlet oxygen

Citation Formats

Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., and Freunberger, Stefan A. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Germany: N. p., 2018. Web. doi:10.1002/anie.201802277.
Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., & Freunberger, Stefan A. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Germany. https://doi.org/10.1002/anie.201802277
Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., and Freunberger, Stefan A. Sat . "Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen". Germany. https://doi.org/10.1002/anie.201802277.
@article{osti_1433266,
title = {Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen},
author = {Mahne, Nika and Renfrew, Sara E. and McCloskey, Bryan D. and Freunberger, Stefan A.},
abstractNote = {Abstract Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal‐O 2 batteries, and are believed to form and decompose reversibly in metal‐O 2 /CO 2 cells. In these cathodes, Li 2 CO 3 decomposes to CO 2 when exposed to potentials above 3.8 V vs. Li/Li + . However, O 2 evolution, as would be expected according to the decomposition reaction 2 Li 2 CO 3 →4 Li + +4 e − +2 CO 2 +O 2 , is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen ( 1 O 2 ) forms upon oxidizing Li 2 CO 3 in an aprotic electrolyte and therefore does not evolve as O 2 . These results have substantial implications for the long‐term cyclability of batteries: they underpin the importance of avoiding 1 O 2 in metal‐O 2 batteries, question the possibility of a reversible metal‐O 2 /CO 2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition‐metal cathodes with residual Li 2 CO 3 .},
doi = {10.1002/anie.201802277},
journal = {Angewandte Chemie (International Edition)},
number = 19,
volume = 57,
place = {Germany},
year = {Sat Apr 14 00:00:00 EDT 2018},
month = {Sat Apr 14 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/anie.201802277

Citation Metrics:
Cited by: 160 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

A Molten Salt Lithium–Oxygen Battery
journal, February 2016

  • Giordani, Vincent; Tozier, Dylan; Tan, Hongjin
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b11744

Electro-Oxidation of Carbonate in Aqueous Solution on a Platinum Rotating Ring Disk Electrode
journal, October 2005


Achilles’ Heel of Lithium-Air Batteries: Lithium Carbonate
journal, March 2018

  • Zhao, Zhiwei; Huang, Jun; Peng, Zhangquan
  • Angewandte Chemie International Edition, Vol. 57, Issue 15
  • DOI: 10.1002/anie.201710156

Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0 ≤ y ≤ 1)
journal, November 1995


Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO 2 battery through tracing missing oxygen
journal, January 2016

  • Yang, Sixie; He, Ping; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C6EE00004E

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
journal, March 2017


Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery
journal, May 2016

  • Wandt, Johannes; Jakes, Peter; Granwehr, Josef
  • Angewandte Chemie International Edition, Vol. 55, Issue 24
  • DOI: 10.1002/anie.201602142

Mechanistic Insights into Catalyst-Assisted Nonaqueous Oxygen Evolution Reaction in Lithium–Oxygen Batteries
journal, March 2016

  • Wang, Yu; Liang, Zhuojian; Zou, Qingli
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.6b00984

Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3−2x/3]Mn[sub 2/3−x/3]]O[sub 2]
journal, January 2002

  • Lu, Zhonghua; Beaulieu, L. Y.; Donaberger, R. A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 6
  • DOI: 10.1149/1.1471541

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Singlet oxygen: there is indeed something new under the sun
journal, January 2010

  • Ogilby, Peter R.
  • Chemical Society Reviews, Vol. 39, Issue 8
  • DOI: 10.1039/b926014p

Implications of CO 2 Contamination in Rechargeable Nonaqueous Li–O 2 Batteries
journal, December 2012

  • Gowda, S. R.; Brunet, A.; Wallraff, G. M.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 2
  • DOI: 10.1021/jz301902h

Singulett-Sauerstoff in der aprotischen Natrium-O 2 -Batterie
journal, November 2017

  • Schafzahl, Lukas; Mahne, Nika; Schafzahl, Bettina
  • Angewandte Chemie, Vol. 129, Issue 49
  • DOI: 10.1002/ange.201709351

Alkali-metal peroxocarbonates, M 2 [CO 3 ]·nH 2 O 2 , M 2 [C 2 O 6 ], M[HCO 4 ]·nH 2 O, and Li 2 [CO 4 ]·H 2 O
journal, January 1980

  • Jones, D. Philip; Griffith, William P.
  • J. Chem. Soc., Dalton Trans., Issue 12
  • DOI: 10.1039/DT9800002526

Singlet Oxygen-Induced Photodegradation of the Polymers and Dyes in Optical Sensing Materials and the Effect of Stabilizers on These Processes
journal, September 2013

  • Enko, Barbara; Borisov, Sergey M.; Regensburger, Johannes
  • The Journal of Physical Chemistry A, Vol. 117, Issue 36
  • DOI: 10.1021/jp4046462

Synthesis and Electrochemistry of LiNi[sub x]Mn[sub 2−x]O[sub 4]
journal, January 1997

  • Zhong, Qiming
  • Journal of The Electrochemical Society, Vol. 144, Issue 1
  • DOI: 10.1149/1.1837386

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Intrinsic Barrier to Electrochemically Decompose Li 2 CO 3 and LiOH
journal, November 2014

  • Ling, Chen; Zhang, Ruigang; Takechi, Kensuke
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp5093306

Lithium–oxygen batteries: bridging mechanistic understanding and battery performance
journal, January 2013

  • Lu, Yi-Chun; Gallant, Betar M.; Kwabi, David G.
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee23966g

Li 2 CO 3 : Die Achillesferse von Lithium-Luft-Batterien
journal, March 2018


Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie, Vol. 124, Issue 40
  • DOI: 10.1002/ange.201201429

Singlet Molecular Oxygen Generated from Lipid Hydroperoxides by the Russell Mechanism:  Studies Using 18 O-Labeled Linoleic Acid Hydroperoxide and Monomol Light Emission Measurements
journal, May 2003

  • Miyamoto, Sayuri; Martinez, Glaucia R.; Medeiros, Marisa H. G.
  • Journal of the American Chemical Society, Vol. 125, Issue 20
  • DOI: 10.1021/ja029115o

Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery
journal, April 2016

  • Wandt, Johannes; Jakes, Peter; Granwehr, Josef
  • Angewandte Chemie, Vol. 128, Issue 24
  • DOI: 10.1002/ange.201602142

Toward a Lithium–“Air” Battery: The Effect of CO 2 on the Chemistry of a Lithium–Oxygen Cell
journal, June 2013

  • Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja4016765

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries
journal, October 2010

  • Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stéphane
  • Electrochemistry Communications, Vol. 12, Issue 10
  • DOI: 10.1016/j.elecom.2010.07.016

The Formation Mechanism of Fluorescent Metal Complexes at the Li x Ni 0.5 Mn 1.5 O 4−δ /Carbonate Ester Electrolyte Interface
journal, March 2015

  • Jarry, Angélique; Gottis, Sébastien; Yu, Young-Sang
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5116698

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells
journal, January 2013

  • Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K. Uta
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 27
  • DOI: 10.1039/c3cp51112j

Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells
journal, June 2012


Singlet Oxygen during Cycling of the Aprotic Sodium-O 2 Battery
journal, November 2017

  • Schafzahl, Lukas; Mahne, Nika; Schafzahl, Bettina
  • Angewandte Chemie International Edition, Vol. 56, Issue 49
  • DOI: 10.1002/anie.201709351

On the incompatibility of lithium–O 2 battery technology with CO 2
journal, January 2017

  • Zhang, Shiyu; Nava, Matthew J.; Chow, Gary K.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC01230F