skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen

Abstract

Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal-O2 batteries, and are believed to form and decompose reversibly in metal-O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3 → 4 Li++4 e+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long-term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal-O2 batteries, question the possibility of a reversible metal-O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition-metal cathodes with residual Li2CO3.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9 8010 Graz Austria
  2. Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Department of Chemical and Biomolecular Engineering, University of California - Berkeley, Berkeley CA 94720 USA
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1433266
Alternate Identifier(s):
OSTI ID: 1433267; OSTI ID: 1460317
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 57 Journal Issue: 19; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; electrochemistry; lithium batteries; lithium carbonate; reaction mechanisms; singlet oxygen

Citation Formats

Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., and Freunberger, Stefan A. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Germany: N. p., 2018. Web. doi:10.1002/anie.201802277.
Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., & Freunberger, Stefan A. Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen. Germany. doi:10.1002/anie.201802277.
Mahne, Nika, Renfrew, Sara E., McCloskey, Bryan D., and Freunberger, Stefan A. Sat . "Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen". Germany. doi:10.1002/anie.201802277.
@article{osti_1433266,
title = {Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen},
author = {Mahne, Nika and Renfrew, Sara E. and McCloskey, Bryan D. and Freunberger, Stefan A.},
abstractNote = {Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal-O2 batteries, and are believed to form and decompose reversibly in metal-O2/CO2 cells. In these cathodes, Li2CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+. However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2CO3 → 4 Li++4 e–+2 CO2+O2, is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1O2) forms upon oxidizing Li2CO3 in an aprotic electrolyte and therefore does not evolve as O2. These results have substantial implications for the long-term cyclability of batteries: they underpin the importance of avoiding 1O2 in metal-O2 batteries, question the possibility of a reversible metal-O2/CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition-metal cathodes with residual Li2CO3.},
doi = {10.1002/anie.201802277},
journal = {Angewandte Chemie (International Edition)},
number = 19,
volume = 57,
place = {Germany},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/anie.201802277

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

A Molten Salt Lithium–Oxygen Battery
journal, February 2016

  • Giordani, Vincent; Tozier, Dylan; Tan, Hongjin
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b11744

Electro-Oxidation of Carbonate in Aqueous Solution on a Platinum Rotating Ring Disk Electrode
journal, October 2005


Achilles’ Heel of Lithium-Air Batteries: Lithium Carbonate
journal, March 2018

  • Zhao, Zhiwei; Huang, Jun; Peng, Zhangquan
  • Angewandte Chemie International Edition, Vol. 57, Issue 15
  • DOI: 10.1002/anie.201710156

Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0 ≤ y ≤ 1)
journal, November 1995


Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie International Edition, Vol. 51, Issue 40
  • DOI: 10.1002/anie.201201429

Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO 2 battery through tracing missing oxygen
journal, January 2016

  • Yang, Sixie; He, Ping; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C6EE00004E

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
journal, March 2017


Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery
journal, May 2016

  • Wandt, Johannes; Jakes, Peter; Granwehr, Josef
  • Angewandte Chemie International Edition, Vol. 55, Issue 24
  • DOI: 10.1002/anie.201602142

Mechanistic Insights into Catalyst-Assisted Nonaqueous Oxygen Evolution Reaction in Lithium–Oxygen Batteries
journal, March 2016

  • Wang, Yu; Liang, Zhuojian; Zou, Qingli
  • The Journal of Physical Chemistry C, Vol. 120, Issue 12
  • DOI: 10.1021/acs.jpcc.6b00984

Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3−2x/3]Mn[sub 2/3−x/3]]O[sub 2]
journal, January 2002

  • Lu, Zhonghua; Beaulieu, L. Y.; Donaberger, R. A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 6
  • DOI: 10.1149/1.1471541

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Singlet oxygen: there is indeed something new under the sun
journal, January 2010

  • Ogilby, Peter R.
  • Chemical Society Reviews, Vol. 39, Issue 8
  • DOI: 10.1039/b926014p

Implications of CO 2 Contamination in Rechargeable Nonaqueous Li–O 2 Batteries
journal, December 2012

  • Gowda, S. R.; Brunet, A.; Wallraff, G. M.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 2
  • DOI: 10.1021/jz301902h

Singulett-Sauerstoff in der aprotischen Natrium-O 2 -Batterie
journal, November 2017

  • Schafzahl, Lukas; Mahne, Nika; Schafzahl, Bettina
  • Angewandte Chemie, Vol. 129, Issue 49
  • DOI: 10.1002/ange.201709351

Alkali-metal peroxocarbonates, M 2 [CO 3 ]·nH 2 O 2 , M 2 [C 2 O 6 ], M[HCO 4 ]·nH 2 O, and Li 2 [CO 4 ]·H 2 O
journal, January 1980

  • Jones, D. Philip; Griffith, William P.
  • J. Chem. Soc., Dalton Trans., Issue 12
  • DOI: 10.1039/DT9800002526

Singlet Oxygen-Induced Photodegradation of the Polymers and Dyes in Optical Sensing Materials and the Effect of Stabilizers on These Processes
journal, September 2013

  • Enko, Barbara; Borisov, Sergey M.; Regensburger, Johannes
  • The Journal of Physical Chemistry A, Vol. 117, Issue 36
  • DOI: 10.1021/jp4046462

Synthesis and Electrochemistry of LiNi[sub x]Mn[sub 2−x]O[sub 4]
journal, January 1997

  • Zhong, Qiming
  • Journal of The Electrochemical Society, Vol. 144, Issue 1
  • DOI: 10.1149/1.1837386

Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries
journal, January 2007

  • Thackeray, Michael M.; Kang, Sun-Ho; Johnson, Christopher S.
  • Journal of Materials Chemistry, Vol. 17, Issue 30, p. 3112-3125
  • DOI: 10.1039/b702425h

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Intrinsic Barrier to Electrochemically Decompose Li 2 CO 3 and LiOH
journal, November 2014

  • Ling, Chen; Zhang, Ruigang; Takechi, Kensuke
  • The Journal of Physical Chemistry C, Vol. 118, Issue 46
  • DOI: 10.1021/jp5093306

Lithium–oxygen batteries: bridging mechanistic understanding and battery performance
journal, January 2013

  • Lu, Yi-Chun; Gallant, Betar M.; Kwabi, David G.
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee23966g

Li 2 CO 3 : Die Achillesferse von Lithium-Luft-Batterien
journal, March 2018


Lithiumbatterien und elektrische Doppelschichtkondensatoren: aktuelle Herausforderungen
journal, September 2012

  • Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A.
  • Angewandte Chemie, Vol. 124, Issue 40
  • DOI: 10.1002/ange.201201429

Singlet Molecular Oxygen Generated from Lipid Hydroperoxides by the Russell Mechanism:  Studies Using 18 O-Labeled Linoleic Acid Hydroperoxide and Monomol Light Emission Measurements
journal, May 2003

  • Miyamoto, Sayuri; Martinez, Glaucia R.; Medeiros, Marisa H. G.
  • Journal of the American Chemical Society, Vol. 125, Issue 20
  • DOI: 10.1021/ja029115o

Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery
journal, April 2016

  • Wandt, Johannes; Jakes, Peter; Granwehr, Josef
  • Angewandte Chemie, Vol. 128, Issue 24
  • DOI: 10.1002/ange.201602142

Toward a Lithium–“Air” Battery: The Effect of CO 2 on the Chemistry of a Lithium–Oxygen Cell
journal, June 2013

  • Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja4016765

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries
journal, October 2010

  • Shanmukaraj, Devaraj; Grugeon, Sylvie; Laruelle, Stéphane
  • Electrochemistry Communications, Vol. 12, Issue 10
  • DOI: 10.1016/j.elecom.2010.07.016

The Formation Mechanism of Fluorescent Metal Complexes at the Li x Ni 0.5 Mn 1.5 O 4−δ /Carbonate Ester Electrolyte Interface
journal, March 2015

  • Jarry, Angélique; Gottis, Sébastien; Yu, Young-Sang
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5116698

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells
journal, January 2013

  • Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K. Uta
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 27
  • DOI: 10.1039/c3cp51112j

Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells
journal, June 2012


Singlet Oxygen during Cycling of the Aprotic Sodium-O 2 Battery
journal, November 2017

  • Schafzahl, Lukas; Mahne, Nika; Schafzahl, Bettina
  • Angewandte Chemie International Edition, Vol. 56, Issue 49
  • DOI: 10.1002/anie.201709351

On the incompatibility of lithium–O 2 battery technology with CO 2
journal, January 2017

  • Zhang, Shiyu; Nava, Matthew J.; Chow, Gary K.
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC01230F