skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

Abstract

Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.

Authors:
 [1];  [1];  [2];  [3];  [4];  [4];  [4];  [2];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
  2. Tsinghua Univ., Beijing (China). Key Lab. of Organic Optoelectronics and Molecular Engineering of Ministry of Education. Dept. of Chemistry
  3. BMW Group, Munich (Germany)
  4. BMW Group Technology Office USA, Mountain View, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); BMW Group (Germany)
OSTI Identifier:
1433100
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Polymers
Additional Journal Information:
Journal Volume: 9; Journal Issue: 12; Journal ID: ISSN 2073-4360
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; energy storage; lithium-ion battery; conductive polymer binder; silicon/graphene; molecular spring; high loading

Citation Formats

Zheng, Tianyue, Jia, Zhe, Lin, Na, Langer, Thorsten, Lux, Simon, Lund, Isaac, Gentschev, Ann-Christin, Qiao, Juan, and Liu, Gao. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries. United States: N. p., 2017. Web. doi:10.3390/polym9120657.
Zheng, Tianyue, Jia, Zhe, Lin, Na, Langer, Thorsten, Lux, Simon, Lund, Isaac, Gentschev, Ann-Christin, Qiao, Juan, & Liu, Gao. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries. United States. doi:10.3390/polym9120657.
Zheng, Tianyue, Jia, Zhe, Lin, Na, Langer, Thorsten, Lux, Simon, Lund, Isaac, Gentschev, Ann-Christin, Qiao, Juan, and Liu, Gao. Wed . "Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries". United States. doi:10.3390/polym9120657. https://www.osti.gov/servlets/purl/1433100.
@article{osti_1433100,
title = {Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries},
author = {Zheng, Tianyue and Jia, Zhe and Lin, Na and Langer, Thorsten and Lux, Simon and Lund, Isaac and Gentschev, Ann-Christin and Qiao, Juan and Liu, Gao},
abstractNote = {Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate) homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.},
doi = {10.3390/polym9120657},
journal = {Polymers},
number = 12,
volume = 9,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries
journal, January 2012

  • Lin, Yong-Mao; Klavetter, Kyle C.; Abel, Paul R.
  • Chemical Communications, Vol. 48, Issue 58
  • DOI: 10.1039/c2cc31712e

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Mechanism of Interactions between CMC Binder and Si Single Crystal Facets
journal, August 2014

  • Vogl, U. S.; Das, P. K.; Weber, A. Z.
  • Langmuir, Vol. 30, Issue 34
  • DOI: 10.1021/la501791q

Inward lithium-ion breathing of hierarchically porous silicon anodes
journal, November 2015

  • Xiao, Qiangfeng; Gu, Meng; Yang, Hui
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9844

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes
journal, July 2013

  • Wu, Mingyan; Xiao, Xingcheng; Vukmirovic, Nenad
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja4054465

Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes
journal, September 2011

  • Liu, Gao; Xun, Shidi; Vukmirovic, Nenad
  • Advanced Materials, Vol. 23, Issue 40, p. 4679-4683
  • DOI: 10.1002/adma.201102421

Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries
journal, February 2015

  • Park, Sang-Jae; Zhao, Hui; Ai, Guo
  • Journal of the American Chemical Society, Vol. 137, Issue 7
  • DOI: 10.1021/ja511181p

Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability
journal, January 2008

  • Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 5
  • DOI: 10.1149/1.2888173

High Capacity and High Density Functional Conductive Polymer and SiO Anode for High-Energy Lithium-Ion Batteries
journal, December 2014

  • Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 1
  • DOI: 10.1021/am507376f

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
journal, October 2010

  • Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100871y

Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications
journal, December 2014


Investigating the Doping Mechanism of Pyrene Based Methacrylate Functional Conductive Binder in Silicon Anodes for Lithium-Ion Batteries
journal, January 2017

  • Ling, Min; Liu, Michael; Zheng, Tianyue
  • Journal of The Electrochemical Society, Vol. 164, Issue 4
  • DOI: 10.1149/2.0011704jes

Highly Reversible Lithium Storage in Nanostructured Silicon
journal, January 2003

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596917

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Silicon based lithium-ion battery anodes: A chronicle perspective review
journal, January 2017


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Critical roles of binders and formulation at multiscales of silicon-based composite electrodes
journal, April 2015


Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
journal, January 2016

  • Jung, Roland; Metzger, Michael; Haering, Dominik
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0951608jes

Layered amorphous silicon as negative electrodes in lithium-ion batteries
journal, November 2016


Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries
journal, January 2009

  • Komaba, S.; Okushi, K.; Ozeki, T.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 5
  • DOI: 10.1149/1.3086262