skip to main content

DOE PAGESDOE PAGES

Title: Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution

While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.
Authors:
ORCiD logo [1] ; ORCiD logo [2] ;  [3] ; ORCiD logo [4] ;  [5] ;  [6] ;  [7] ; ORCiD logo [8] ;  [3] ;  [9] ;  [10] ;  [11] ; ORCiD logo [3] ; ORCiD logo [4] ;  [4] ; ORCiD logo [12]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics
  3. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Energy Conversion and Storage
  4. Technical Univ. of Denmark, Lyngby (Denmark). Section for Surface Physics and Catalysis, Dept. of Physics
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
  7. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  8. Oregon State Univ., Corvallis, OR (United States). School of Chemical, Biological, and Environmental Engineering
  9. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  10. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering; Univ. di Milano-Bicocca (Italy). Dipartimento di Scienza dei Materiali
  11. Univ. of Copenhagen (Denmark). Dept. of Chemistry
  12. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Publication Date:
Grant/Contract Number:
9455; AC02-06CH11357; AC02-76SF00515; ACI-1548562
Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: 12; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE
OSTI Identifier:
1433005
Alternate Identifier(s):
OSTI ID: 1419931

Rao, Reshma R., Kolb, Manuel J., Halck, Niels Bendtsen, Pedersen, Anders Filsoe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Hansen, Heine A., Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L., and Shao-Horn, Yang. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution. United States: N. p., Web. doi:10.1039/c7ee02307c.
Rao, Reshma R., Kolb, Manuel J., Halck, Niels Bendtsen, Pedersen, Anders Filsoe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Hansen, Heine A., Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L., & Shao-Horn, Yang. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution. United States. doi:10.1039/c7ee02307c.
Rao, Reshma R., Kolb, Manuel J., Halck, Niels Bendtsen, Pedersen, Anders Filsoe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Hansen, Heine A., Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L., and Shao-Horn, Yang. 2017. "Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution". United States. doi:10.1039/c7ee02307c. https://www.osti.gov/servlets/purl/1433005.
@article{osti_1433005,
title = {Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution},
author = {Rao, Reshma R. and Kolb, Manuel J. and Halck, Niels Bendtsen and Pedersen, Anders Filsoe and Mehta, Apurva and You, Hoydoo and Stoerzinger, Kelsey A. and Feng, Zhenxing and Hansen, Heine A. and Zhou, Hua and Giordano, Livia and Rossmeisl, Jan and Vegge, Tejs and Chorkendorff, Ib and Stephens, Ifan E. L. and Shao-Horn, Yang},
abstractNote = {While the surface atomic structure of RuO2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H2O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.},
doi = {10.1039/c7ee02307c},
journal = {Energy & Environmental Science},
number = 12,
volume = 10,
place = {United States},
year = {2017},
month = {11}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999

Solar Water Splitting Cells
journal, November 2010
  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Ab initiomolecular dynamics for liquid metals
journal, January 1993

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996

Special points for Brillouin-zone integrations
journal, June 1976
  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984