skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on April 12, 2019

Title: Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

Authors:
ORCiD logo [1] ;  [2] ; ORCiD logo [3]
  1. Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
  2. School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
  3. Bradley Department of Electrical and Computer Engineering and Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
Publication Date:
Grant/Contract Number:
CBET-1048616
Type:
Publisher's Accepted Manuscript
Journal Name:
Applied Physics Reviews
Additional Journal Information:
Journal Name: Applied Physics Reviews Journal Volume: 5 Journal Issue: 2; Journal ID: ISSN 1931-9401
Publisher:
American Institute of Physics
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
OSTI Identifier:
1432910

Saha, Bivas, Shakouri, Ali, and Sands, Timothy D. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials. United States: N. p., Web. doi:10.1063/1.5011972.
Saha, Bivas, Shakouri, Ali, & Sands, Timothy D. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials. United States. doi:10.1063/1.5011972.
Saha, Bivas, Shakouri, Ali, and Sands, Timothy D. 2018. "Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials". United States. doi:10.1063/1.5011972.
@article{osti_1432910,
title = {Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials},
author = {Saha, Bivas and Shakouri, Ali and Sands, Timothy D.},
abstractNote = {},
doi = {10.1063/1.5011972},
journal = {Applied Physics Reviews},
number = 2,
volume = 5,
place = {United States},
year = {2018},
month = {6}
}

Works referenced in this record:

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010
  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Nanoscale thermal transport
journal, January 2003
  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305

Low-Loss Plasmonic Metamaterials
journal, January 2011

Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials
journal, January 2014
  • Lu, Dylan; Kan, Jimmy J.; Fullerton, Eric E.
  • Nature Nanotechnology, Vol. 9, Issue 1, p. 48-53
  • DOI: 10.1038/nnano.2013.276

New and Old Concepts in Thermoelectric Materials
journal, November 2009
  • Sootsman, Joseph R.; Chung, Duck Young; Kanatzidis, Mercouri G.
  • Angewandte Chemie International Edition, Vol. 48, Issue 46, p. 8616-8639
  • DOI: 10.1002/anie.200900598

Thermal boundary resistance
journal, July 1989

Hyperbolic metamaterials
journal, December 2013
  • Poddubny, Alexander; Iorsh, Ivan; Belov, Pavel
  • Nature Photonics, Vol. 7, Issue 12, p. 948-957
  • DOI: 10.1038/nphoton.2013.243

Negative refraction in semiconductor metamaterials
journal, October 2007
  • Hoffman, Anthony J.; Alekseyev, Leonid; Howard, Scott S.
  • Nature Materials, Vol. 6, Issue 12, p. 946-950
  • DOI: 10.1038/nmat2033

Optical Constants of the Noble Metals
journal, December 1972

InGaN-Based Multi-Quantum-Well-Structure Laser Diodes
journal, January 1996
  • Nakamura, Shuji; Senoh, Masayuki; Nagahama, Shin-ichi
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 2, No. 1B, p. L74-L76
  • DOI: 10.1143/JJAP.35.L74

Quantum Cascade Laser
journal, April 1994