A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Finally, possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. Finally, this higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.
- Research Organization:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC04-94AL85000; NA0003525
- OSTI ID:
- 1432789
- Alternate ID(s):
- OSTI ID: 1432583
- Report Number(s):
- SAND-2018-1350J; 660566; TRN: US1802362
- Journal Information:
- Journal of Applied Physics, Vol. 123, Issue 14; ISSN 0021-8979
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Simulation of reactive nanolaminates using reduced models: III. Ingredients for a general multidimensional formulation
Simulation of reactive nanolaminates using reduced models: II. Normal propagation